हिंदी

In parallelogram ABCD, side AB is greater than side BC and P is a point in AC such that PB bisects angle B. Prove that P is equidistant from AB and BC. - Mathematics

Advertisements
Advertisements

प्रश्न

In parallelogram ABCD, side AB is greater than side BC and P is a point in AC such that PB bisects angle B. Prove that P is equidistant from AB and BC. 

योग

उत्तर

  
Construction: From P, draw PL ⊥ AB and PM ⊥ BC

Proof: In ΔPLB and ΔPMB

∠PLB = ∠PMB  ...(Each = 90°)

∠PBL = ∠PBM  ...(Given)

PB = PB   ...(Common)

∴ By Angle – angle side criterion of congruence, 

ΔPLB ≅ ΔPMB  ...(AAS postulate)

The corresponding parts of the congruent triangles are congruent

∴ PL = PM   ...(C.P.C.T.)

Hence, P is equidistant from AB and BC 

shaalaa.com
  क्या इस प्रश्न या उत्तर में कोई त्रुटि है?
अध्याय 16: Loci (Locus and Its Constructions) - Exercise 16 (A) [पृष्ठ २३७]

APPEARS IN

सेलिना Mathematics [English] Class 10 ICSE
अध्याय 16 Loci (Locus and Its Constructions)
Exercise 16 (A) | Q 8 | पृष्ठ २३७

वीडियो ट्यूटोरियलVIEW ALL [1]

Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×