हिंदी

In triangle LMN, bisectors of interior angles at L and N intersect each other at point A. Prove that: Point A is equidistant from all the three sides of the triangle. AM bisects angle LMN. - Mathematics

Advertisements
Advertisements

प्रश्न

In triangle LMN, bisectors of interior angles at L and N intersect each other at point A. Prove that:

  1. Point A is equidistant from all the three sides of the triangle.
  2. AM bisects angle LMN. 
योग

उत्तर

 
Construction: Join AM

Proof:

∵ A lies on bisector of ∠N

∴ A is equidistant from MN and LN.

Again, A lies on bisector of ∠L

∴ A is equidistant from LN and LM.

Hence, A is equidistant from all sides of the triangle LMN.

∴ A lies on the bisector of ∠M 

shaalaa.com
  क्या इस प्रश्न या उत्तर में कोई त्रुटि है?
अध्याय 16: Loci (Locus and Its Constructions) - Exercise 16 (A) [पृष्ठ २३८]

APPEARS IN

सेलिना Mathematics [English] Class 10 ICSE
अध्याय 16 Loci (Locus and Its Constructions)
Exercise 16 (A) | Q 9 | पृष्ठ २३८

वीडियो ट्यूटोरियलVIEW ALL [1]

संबंधित प्रश्न

Construct a triangle ABC, in which AB = 4.2 cm, BC = 6.3 cm and AC = 5 cm. Draw perpendicular bisector of BC which meets AC at point D. Prove that D is equidistant from B and C. 


Construct a right angled triangle PQR, in which ∠Q = 90°, hypotenuse PR = 8 cm and QR = 4.5 cm. Draw bisector of angle PQR and let it meets PR at point T. Prove that T is equidistant from PQ and QR. 


The given figure shows a triangle ABC in which AD bisects angle BAC. EG is perpendicular bisector of side AB which intersects AD at point F.

Prove that: 


F is equidistant from A and B.


In the given triangle ABC, find a point P equidistant from AB and AC; and also equidistant from B and C. 

 


Describe the locus of a stone dropped from the top of a tower. 


Describe the locus of a runner, running around a circular track and always keeping a distance of 1.5 m from the inner edge. 


Describe the locus of the centres of all circles passing through two fixed points. 


The speed of sound is 332 metres per second. A gun is fired. Describe the locus of all the people on the earth’s surface, who hear the sound exactly one second later.


In  Δ ABC, the perpendicular bisector of AB and AC meet at 0. Prove that O is equidistant from the three vertices. Also, prove that if M is the mid-point of BC then OM meets BC at right angles. 


Given: ∠BAC, a line intersects the arms of ∠BAC in P and Q. How will you locate a point on line segment PQ, which is equidistant from AB and AC? Does such a point always exist?


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×