मराठी

In triangle LMN, bisectors of interior angles at L and N intersect each other at point A. Prove that: Point A is equidistant from all the three sides of the triangle. AM bisects angle LMN. - Mathematics

Advertisements
Advertisements

प्रश्न

In triangle LMN, bisectors of interior angles at L and N intersect each other at point A. Prove that:

  1. Point A is equidistant from all the three sides of the triangle.
  2. AM bisects angle LMN. 
बेरीज

उत्तर

 
Construction: Join AM

Proof:

∵ A lies on bisector of ∠N

∴ A is equidistant from MN and LN.

Again, A lies on bisector of ∠L

∴ A is equidistant from LN and LM.

Hence, A is equidistant from all sides of the triangle LMN.

∴ A lies on the bisector of ∠M 

shaalaa.com
  या प्रश्नात किंवा उत्तरात काही त्रुटी आहे का?
पाठ 16: Loci (Locus and Its Constructions) - Exercise 16 (A) [पृष्ठ २३८]

APPEARS IN

सेलिना Mathematics [English] Class 10 ICSE
पाठ 16 Loci (Locus and Its Constructions)
Exercise 16 (A) | Q 9 | पृष्ठ २३८

व्हिडिओ ट्यूटोरियलVIEW ALL [1]

Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×