Advertisements
Advertisements
प्रश्न
In the given figure, A, B, C and D are four points on a circle. AC and BD intersect at a point E such that ∠BEC = 130° and ∠ECD = 20°. Find ∠BAC.
उत्तर
In ΔCDE,
∠CDE + ∠DCE = ∠CEB ...(Exterior angle)
⇒ ∠CDE + 20° = 130°
⇒ ∠CDE = 110°
However, ∠BAC = ∠CDE ...(Angles in the same segment of a circle)
⇒ ∠BAC = 110°
APPEARS IN
संबंधित प्रश्न
Prove that a diameter of a circle which bisects a chord of the circle also bisects the angle subtended by the chord at the centre of the circle.
Given an arc of a circle, show how to complete the circle.
In the below fig. O is the centre of the circle. Find ∠BAC.
If O is the centre of the circle, find the value of x in the following figure
If O is the centre of the circle, find the value of x in the following figure
If O is the centre of the circle, find the value of x in the following figure
If O is the centre of the circle, find the value of x in the following figure
In the given figure, if ∠AOB = 80° and ∠ABC = 30°, then find ∠CAO.
In the given figure, AB is a diameter of the circle such that ∠A = 35° and ∠Q = 25°, find ∠PBR.
In the given figure, P and Q are centres of two circles intersecting at B and C. ACD is a straight line. Then, ∠BQD =