Advertisements
Advertisements
प्रश्न
In the given figure, P and Q are centres of two circles intersecting at B and C. ACD is a straight line. Then, ∠BQD =
उत्तर
Consider the circle with the centre ‘P’.
The angle subtended by an arc at the centre of the circle is double the angle subtended by the arc in the remaining part of the circle.
So, here we have
`angleACB = (angleAPB )/2`
`=(150°)/2`
`angleACB` = 75°
Since ‘ACD’ is a straight line, we have
`angleACB + angleBCD` = 180°
`angleBCD = 180° - angleACB`
= 180° - 75°
`angleBCD ` = 105°
Now let us consider the circle with centre ‘Q’. Here let ‘E’ be any point on the circumference along the major arc ‘BD’. Now ‘CBED’ forms a cyclic quadrilateral.
In a cyclic quadrilateral it is known that the opposite angles are supplementary, meaning that the opposite angles add up to 180°.
So here,
`angleBCD + angleBED` = 180°
`angleBED = 180° - angleBCD`
= 180° - 105°
`angleBED` = 75°
The angle subtended by an arc at the centre of the circle is double the angle subtended by the arc in the remaining part of the circle.
So, now we have
`angleBQD = 2 angleBED`
=2(75°)
`angleBQD` = 150°
Hence, the measure of `angleBQD` is 150° .
APPEARS IN
संबंधित प्रश्न
In the given figure, ∠ABC = 69°, ∠ACB = 31°, find ∠BDC.
Prove that the line joining the mid-point of a chord to the centre of the circle passes through the mid-point of the corresponding minor arc.
Given an arc of a circle, complete the circle.
If O is the centre of the circle, find the value of x in the following figure
In the given figure, O and O' are centres of two circles intersecting at B and C. ACD is a straight line, find x.
In the given figure, O is the centre of the circle, prove that ∠x = ∠y + ∠z.
In the given figure, two congruent circles with centres O and O' intersect at A and B. If ∠AOB = 50°, then find ∠APB.
In the given figure, if ∠AOB = 80° and ∠ABC = 30°, then find ∠CAO.
In a circle, the major arc is 3 times the minor arc. The corresponding central angles and the degree measures of two arcs are
If arcs AXB and CYD of a circle are congruent, find the ratio of AB and CD.