हिंदी

In the given figure, PQ is a tangent to the circle at A. AB and AD are bisectors of ∠CAQ and ∠PAC. If ∠BAQ = 30°, prove that : BD is diameter of the circle. - Mathematics

Advertisements
Advertisements

प्रश्न

In the given figure, PQ is a tangent to the circle at A. AB and AD are bisectors of ∠CAQ and ∠PAC. If ∠BAQ = 30°, prove that : BD is diameter of the circle.

योग

उत्तर

∠CAB = ∠BAQ = 30° ...(AB is angle bisector of ∠CAQ) 

∠CAQ = 2∠BAQ = 60°  ...(AB is angle bisector of ∠CAQ)

∠CAQ + ∠PAC = 180°  ...(angles in linear pair)

∴ ∠PAC = 120°

∠PAC = 2∠CAD  ...(AD is angle bisector of ∠PAC) 

∠CAD = 60° 

Now,

∠CAD + ∠CAB = 60° + 30° = 90° 

∠DAB = 90° 

Thus, BD subtends 90° on the circle

So, BD is the diameter of circle

shaalaa.com
  क्या इस प्रश्न या उत्तर में कोई त्रुटि है?
अध्याय 18: Tangents and Intersecting Chords - Exercise 18 (A) [पृष्ठ २७६]

APPEARS IN

सेलिना Mathematics [English] Class 10 ICSE
अध्याय 18 Tangents and Intersecting Chords
Exercise 18 (A) | Q 24 | पृष्ठ २७६
Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×