Advertisements
Advertisements
प्रश्न
किसी बिंदु P का स्थिति सदिश का प्रारंभिक बिंदु मूल बिंदु होता है।
विकल्प
सत्य
असत्य
उत्तर
यह कथन सत्य है।
व्याख्या:
क्योंकि, `vec"P" = vec"OP"`
= मूल से सदिश `vec"P"` का विस्थापन।
APPEARS IN
संबंधित प्रश्न
P और Q दो बिंदुओं के स्थिति सदिश क्रमश: `vec"OP" = 2vec"a" + vec"b"` और `vec"OQ" = vec"a" - 2vec"b"` हैं। एक ऐसे बिंदु R का स्थिति सदिश ज्ञात कीजिए जो PQ को 1:2 के अनुपात में बाहयत: विभाजित करता है।
यदि बिंदु (-1, -1, 2), (2, m, 5) और (3, 11, 6) सरेखी, हैं तो m का मान ज्ञात कीजिए।
यदि `vec"a" = 2hat"i" - hat"j" + hat"k", vec"b" = hat"i" + hat"j" - 2hat"k"` और `vec"c" = hat"i" + 3hat"j" - hat"k"`, का वह मान ज्ञात कीजिए जिससे `vec"a"` सदिश `lambdavec"b" + vec"c"` पर लंब हो।
सदिश `6vec"i" + 2vec"j" + 3vec"k"` का परिमाण है
प्रारम्भिक बिंदु P (2, - 3, 5) और अंतिम बिंदु Q(3, -4, 7) वाला सदिश है
x का वह मान जिसके लिए सदिश `2hat"i" - hat"j" + 2hat"k"` और सदिश `3hat"i" - lambdahat"j" + hat"k"` लंबवत है तो λ बराबर है
दो सदिश `hat"j" + hat"k"` और `3hat"i" -hat"j" + 4hat"k"` किसी ∆ABC की क्रमश: दो भुजाओं AB और AC को निरूपित करते हैं। बिंदु A से हो कर जाने वाली मध्यिका (मीडियन) की लंबाई है
एक मात्रक सदिश जो सदिशों `hat"i" - hat"j"` और `hat"i" + hat"j"` दोनों के लंबवत है तथा एक दक्षिणावर्ती पद्धति को निर्मित करने वाला सदिश है।
यदि `vec"a" = hat"i" + hat"j" + 2hat"k"` और `vec"b" = 2hat"i" + hat"j" - 2hat"k"`, की दिशाओं में मात्रक सदिश है `6vec"b"`
एक सदिश `vec"r"` तीनों अक्षों से समान कोण पर झुका हुआ है। यदि `vec"r"` का परिमाण `2sqrt3` इकाई है तो `vec"r"` ज्ञात कीजिए।
एक सदिश `vec"r"` का परिमाण 14 है तथा दिक्-अनुपात 2, 3, - 6 हैं। `vec"r"` के दिक्-कोसाइन और'घटक ज्ञात कीजिए जब कि यह दिया है कि x-अक्ष से `vec"r"` न्यून कोण बनता है।
सदिशों `2hat"i" - hat"j" + hat"k"` और `3hat"i" + 4hat"j" - hat"k"` के बीच का कोण ज्ञात कीजिए।
सदिश दर `vec"a" = 3hat"i" + hat"j" + 2hat"k"` तथा सदिश `vec"b" = 2hat"i" - 2hat"j" + 4hat"k"` के बीच का sine ज्ञात कीजिए।
यदि A, B, C, D बिंदुओं के स्थिति सदिश क्रमश: `hat"i" + hat"j" - hat"k", 2hat"i" - hat"j" + 3hat"k", 2hat"i" - 3hat"k", 3hat"i" - 2hat"j" + hat"k"` है तो `vec"AB"` का `vec"CD"` अनुदिश प्रक्षेप ज्ञात कीजिए।
सिद्ध कीजिए कि समांतर चतुर्भुज का क्षेत्रफल, जिसके विकर्ण `vec"a"` और `vec"b"` द्वारा व्यक्त हैं, `(|vec"a" xx vec"b"|)/2` है। साथ ही उस समांतर चतुर्भुज का क्षेत्रफल भी ज्ञात कीजिए जिसके विकर्ण `2hat"i" - hat"j" + hat"k"` और `hat"i" + 3hat"j" - hat"k"` है।
बिंदु `2vec"a" - 3vec"b"` और `vec"a" + vec"b"` को मिलाने वाले रेखाखंड को 3:1 में विभाजित करने वाले बिंदु का स्थिति सदिश है
यदि सदिश `3hat"i" - 6hat"j" + hat"k"` और `2hat"i" - 4hat"j" + lambdahat"k"` समांतर हैं तो λ का मान है
किसी भी सदिश `vec"a"` के लिए `(vec"a" xx hat"i")^2 + (vec"a" xx hat"j")^2 + (vec"a" xx hat"k")^2` का मान बराबर है
यदि तीन सदिश `vec"a", vec"b", vec"c"` इस प्रकार हैं कि `vec"a" + vec"b" + vec"a" = vec0` और `|vec"a"|` = 2, `|vec"b"|` = 3, `|vec"c"|` = 5, है, तो `vec"a"*vec"b" + vec"b"*vec"c" + vec"c"*vec"a"` का मान
यदि `|vec"a"|` = 4 और −3 ≤ λ ≤ 2 है तो `|lambdavec"a"|` का अंतराल है
सदिश `vec"a" + vec"b"` असंरेखी सदिशों `vec"a"` और `vec"b"` के बीच के कोण को समद्विभाजित करता है यदि ______
यदि `|vec"a" xx vec"b"|^2 + |vec"a".vec"b"|^2` = 144 और `|vec"a"|` = 4, तो `|vec"b"|` ______ के बराबर है।
यदि `|vec"a"| = |vec"b"|` तो यह आवश्यक है कि `vec"a" = +- vec"b"` है।
यदि `|vec"a" + vec"b"| = |vec"a" - vec"b"|` है तब सदिश `vec"a"` और `vec"b"` लांबिक (orthogonol) हैं।
यदि `vec"a"` और `vec"b"` समचतुर्भुज की संलग्न भुजाएँ हैं तब `vec"a" * vec"b"` = 0 है।