हिंदी

निम्नलिखित आकृति में, समांतर चतुर्भुज ABCD का क्षेत्रफल है : - Mathematics (गणित)

Advertisements
Advertisements

प्रश्न

निम्नलिखित आकृति में, समांतर चतुर्भुज ABCD का क्षेत्रफल है :

विकल्प

  • AB × BM

  • BC × BN

  • DC × DL

  • AD × DL

MCQ

उत्तर

DC × DL

स्पष्टीकरण -


हम जानते हैं कि, एक समांतर चतुर्भुज का क्षेत्रफल उसकी किसी भी भुजा और संबंधित ऊँचाई (या ऊँचाई) का गुणनफल होता है।

यहाँ, जब AB आधार है, तो शीर्षलंब DL है।

समांतर चतुर्भुज का क्षेत्रफल = AB × DL और जब AD आधार है, तो ऊँचाई BM है।

समांतर चतुर्भुज का क्षेत्रफल = AD × BM जब DC आधार है, तो ऊँचाई DL है।

समांतर चतुर्भुज का क्षेत्रफल = DC × DL और जब BC आधार हो, तो ऊँचाई नहीं दी जाती है।

shaalaa.com
एक ही आधार पर और एक ही समांतर रेखाओं के बीच आकृतियाँ
  क्या इस प्रश्न या उत्तर में कोई त्रुटि है?
अध्याय 9: समांतर चतुर्भुजों और त्रिभुजों के क्षेत्रफल - प्रश्नावली 9.1 [पृष्ठ ८७]

APPEARS IN

एनसीईआरटी एक्झांप्लर Mathematics [Hindi] Class 9
अध्याय 9 समांतर चतुर्भुजों और त्रिभुजों के क्षेत्रफल
प्रश्नावली 9.1 | Q 4. | पृष्ठ ८७

संबंधित प्रश्न

यदि E, F, G और H क्रमशः एक समांतर चतुर्भुज ABCD की भुजाओं के मध्य-बिंदु हैं, तो दर्शाइए कि ar (EFGH) = `1/2`ar (ABCD) हैं


आकृति में, भुजा BC पर दो बिंदु D और E  इस प्रकार स्थित हैं कि BD = DE = EC है। दर्शाइए कि ar (ABD) = ar (ADE) = ar (AEC) है।

क्या आप इस प्रश्न का उत्तर दे सकते हैं कि आपने इस अध्याय के 'परिचय' में छोड़ दिया है कि "क्या बुधिया के खेत को वास्तव में बराबर क्षेत्रफल के तीन भागों में बांटा गया है"?

[टिप्पणी: ध्यान दें कि BD = DE = EC लेने पर त्रिभुज ABC को बराबर क्षेत्रफलों वाले तीन त्रिभुज ABD, ADE और AEC में विभाजित किया जाता है। इसी तरह, BC को n समान भागों में विभाजित करके और इस प्रकार प्राप्त विभाजन बिंदुओं को BC के विपरीत शीर्ष से जोड़कर, आप ΔABC को समान क्षेत्रफल वाले n त्रिभुजों में विभाजित कर सकते हैं।]


निम्नलिखित आकृतियों में से किसमें आप एक ही आधार पर और एक ही समांतर रेखाओं के बीच, बने दो बहुभुज प्राप्त करते हैं :


ABCD एक चतुर्भुज है जिसका विकर्ण AC उसे बराबर क्षेत्रफल वाले दो भागों में विभाजित करता है। तब, ABCD ______।


ABCD एक समलंब है जिसकी समांतर भुजाएँ AB = a cm और DC = b cm है (आकृति)। E और F असमांतर भुजाओं के मध्य-बिंदु हैं। ar (ABFE) और ar (EFCD) का अनुपात हैं


निम्नलिखित आकृति में, ABCD और EFGD समांतर चतुर्भुज हैं तथा G भुजा CD का मध्य-बिंदु है। तब, ar (DPC) = `1/2` ar (EFGD) है। 


समांतर चतुर्भुज ABCD का क्षेत्रफल 90 cm2 है (आकृति)। ज्ञात कीजिए :

  1. ar (ABEF) 
  2. ar (ABD) 
  3. ar (BEF) 


समांतर चतुर्भुज ABCD का क्षेत्रफल 90 cm2 है। ज्ञात कीजिए :

ar (ΔABD)


∆ABC, D भुजा AB का मध्य-बिंदु है तथा P भुजा BC पर स्थित कोई बिंदु है। यदि रेखाखंड CQ || PD भुजा AB से Q पर मिलता है (आकृति), तो सिद्ध कीजिए कि ar (BPQ) = `1/2` ar (∆ABC) है।


यदि किसी चतुर्भुज की भुजाओं के मध्य-बिंदुओं को क्रम से मिलाया जाता है, तो सिद्ध कीजिए कि इस प्रकार बने समांतर चतुर्भुज का क्षेत्रफल दिए हुए चतुर्भुज के क्षेत्रफल का आधा होता है (आकृति)।  

[संकेत : BD को मिलाइए और A से BD पर लंब खींचिए।]


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×