Advertisements
Advertisements
प्रश्न
निम्नलिखित के मुख्य मानों को ज्ञात कीजिए:
`"sec"^-1 (2/sqrt3)`
उत्तर
माना y `= "sec"^-1 (2/sqrt3)`
`sec y = 2/sqrt3= sec y(pi/6)`
हम जानते हैं कि sec−1 की प्रमुख मान सीमा है।
`[0,pi] - {pi/2}`
`"sec y = sec" pi/6 = 2/sqrt3`
अत: `"sec"^-1 2/sqrt3 "का मुख्य मान" = pi/6.`
APPEARS IN
संबंधित प्रश्न
निम्नलिखित के मुख्य मानों को ज्ञात कीजिए :
`"sin"^-1 (-1/2)`
निम्नलिखित के मुख्य मानों को ज्ञात कीजिए :
`"cosec"^-1 (2)`
निम्नलिखित के मुख्य मानों को ज्ञात कीजिए:
`"tan"^-1 (-sqrt3)`
निम्नलिखित के मुख्य मानों को ज्ञात कीजिए:
`"cos"^-1 (-1/2)`
निम्नलिखित के मुख्य मानों को ज्ञात कीजिए :
`"tan" ^-1 (-1)`
निम्नलिखित के मुख्य मानों को ज्ञात कीजिए :
`"cosec"^-1 (- sqrt2)`
निम्नलिखित के मान ज्ञात कीजिए:
`"tan"^-1 (1) + "cos"^-1 (-1/2) + "sin"^-1 (-1/2)`
निम्नलिखित के मुख्य मानों को ज्ञात कीजिए:
`"cos"^-1 (1/2) + 2 "sin"^-1 (1/2)`
यदि `sin^-1 x = y,` तो
`"tan"^-1 sqrt 3 - "sec"^-1 (-2)` का मान बराबर है
निम्नलिखित के मान ज्ञात कीजिए:
`cos^-1(cos (13pi)/6)`
सिद्ध कीजिए:
`cos^-1 4/5 + cos^-1 12/13 = cos^-1 33/65`
सिद्ध कीजिए:
`cos^-1 12/13 + sin^-1 3/5 = sin^-1 56/65`
सिद्ध कीजिए:
`tan^-1 63/16 = sin^-1 5/13 + cos^-1 3/5`
सिद्ध कीजिए:
`tan^-1 1/5 + tan^-1 1/7 + tan^-1 1/3 + tan^-1 1/8 = pi/4`
sin(tan-1x), |x| < 1 बराबर होता है:
सिद्ध कीजिए:
`tan^-1((sqrt(1 + x) - sqrt(1 - x))/(sqrt(1 + x) + sqrt(1 - x))) = pi/4 - 1/2cos^-1x, -1/sqrt2 ≤ x ≤ 1`
[संकेत: x = cos 2θ रखिए]
सिद्ध कीजिए:
`(9pi)/8 - 9/4 sin^-1 1/3 = 9/4 sin^-1 (2sqrt2)/3`
निम्नलिखित समीकरण को सरल कीजिए:
`2tan^-1(cosx) = tan^-1(2cosecx)`
यदि `sin^-1(1 - x) - 2sin^-1x = pi/2`, तो x का मान बराबर है:
`tan^-1(x/y) - tan^-1 (x - y)/(x + y)` का मान है: