हिंदी
कर्नाटक बोर्ड पी.यू.सी.पीयूसी विज्ञान कक्षा ११

P Mark Out the Correct Options. - Physics

Advertisements
Advertisements

प्रश्न

Mark out the correct options.

विकल्प

  • The energy of any small part of a string remains constant in a travelling wave.

  • The energy of any small part of a string remains constant in a standing wave.

  •  The energies of all the small parts of equal length are equal in a travelling wave.

  • The energies of all the small parts of equal length are equal in a standing wave.

MCQ

उत्तर

 The energy of any small part of a string remains constant in a standing wave.

A standing wave is formed when the energy of any small part of a string remains constant. If it does not, then there is transfer of energy. In that case, the wave is not stationary.

shaalaa.com
  क्या इस प्रश्न या उत्तर में कोई त्रुटि है?
अध्याय 15: Wave Motion and Waves on a String - MCQ [पृष्ठ ३२३]

APPEARS IN

एचसी वर्मा Concepts of Physics Vol. 1 [English] Class 11 and 12
अध्याय 15 Wave Motion and Waves on a String
MCQ | Q 9 | पृष्ठ ३२३

संबंधित प्रश्न

When a transverse wave on a string is reflected from the free end, the phase change produced is ..............

(a) zero rad

(b) ` pi/2 ` rad

(c) `(3pi)/4` rad

(d) `pi`  rad


A wire of density ‘ρ’ and Young’s modulus ‘Y’ is stretched between two rigid supports separated by a distance ‘L’ under tension ‘T’. Derive an expression for its frequency in fundamental mode. Hence show that `n=1/(2L)sqrt((Yl)/(rhoL))` where symbols have their usual meanings


A transverse harmonic wave on a string is described by y(x, t) = 3.0 sin (36 t + 0.018 x + π/4) 

Where x and y are in cm and t in s. The positive direction of x is from left to right.

(a) Is this a travelling wave or a stationary wave?

If it is travelling, what are the speed and direction of its propagation?

(b) What are its amplitude and frequency?

(c) What is the initial phase at the origin?

(d) What is the least distance between two successive crests in the wave?


Explain why (or how) Solids can support both longitudinal and transverse waves, but only longitudinal waves can propagate in gases


A transverse wave is produced on a stretched string 0.9 m long and fixed at its ends. Find the speed of the transverse wave, when the string vibrates while emitting the second overtone of frequency 324 Hz.


Explain the reflection of transverse and longitudinal waves from a denser medium and a rared medium.


Figure shows a plot of the transverse displacements of the particles of a string at t = 0 through which a travelling wave is passing in the positive x-direction. The wave speed is 20 cm s−1. Find (a) the amplitude, (b) the wavelength, (c) the wave number and (d) the frequency of the wave.


Consider the following statements about sound passing through a gas.
(A) The pressure of the gas at a point oscillates in time.
(B) The position of a small layer of the gas oscillates in time.


A transverse wave described by \[y = \left( 0 \cdot 02  m \right)  \sin  \left( 1 \cdot 0  m^{- 1} \right)  x + \left( 30  s^{- 1} \right)t\] propagates on a stretched string having a linear mass density of \[1 \cdot 2 \times  {10}^{- 4}   kg   m^{- 1}\] the tension in the string.


Two blocks each having a mass of 3⋅2 kg are connected by a wire CD and the system is suspended from the ceiling by another wire AB (See following figure). The linear mass density of the wire AB is 10 g m−1 and that of CD is 8 g m−1. Find the speed of a transverse wave pulse produced in AB and CD.


A circular loop of string rotates about its axis on a frictionless horizontal place at a uniform rate so that the tangential speed of any particle of the string is ν.  If a small transverse disturbance is produced at a point of the loop, with what speed (relative to the string) will this disturbance travel on the string?


A heavy but uniform rope of length L is suspended from a ceiling. (a) Write the velocity of a transverse wave travelling on the string as a function of the distance from the lower end. (b) If the rope is given a sudden sideways jerk at the bottom, how long will it take for the pulse to reach the ceiling? (c) A particle is dropped from the ceiling at the instant the bottom end is given the jerk. Where will the particle meet the pulse?


A transverse wave of amplitude 0⋅50 mm and frequency 100 Hz is produced on a wire stretched to a tension of 100 N. If the wave speed is 100 m s−1, what average power is the source transmitting to the wire?


If the speed of a transverse wave on a stretched string of length 1 m is 60 m−1, what is the fundamental frequency of vibration?


A steel wire of mass 4⋅0 g and length 80 cm is fixed at the two ends. The tension in the wire is 50 N. Find the frequency and wavelength of the fourth harmonic of the fundamental.


A 660 Hz tuning fork sets up vibration in a string clamped at both ends. The wave speed for a transverse wave on this string is 220 m s−1 and the string vibrates in three loops. (a) Find the length of the string. (b) If the maximum amplitude of a particle is 0⋅5 cm, write a suitable equation describing the motion.


The phenomenon of beats can take place


Given below are some functions of x and t to represent the displacement (transverse or longitudinal) of an elastic wave. State which of these represent (i) a traveling wave, (ii) a stationary wave or (iii) none at all:

y = 2 cos (3x) sin (10t)


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×