हिंदी

Prove that the Angles Bisectors of the Angles Formed by Producing Opposite Sides of a Cyclic Quadrilateral (Provided They Are Not Parallel) Intersect at Right Triangle. - Mathematics

Advertisements
Advertisements

प्रश्न

Prove that the angles bisectors of the angles formed by producing opposite sides of a cyclic quadrilateral (provided they are not parallel) intersect at right triangle.

योग

उत्तर

Here, ABCD is a cyclic quadrilateral. PM is bisector of ∠ APB and QM is  bisector of ∠ AQD

In Δ PDL and Δ PBN, ∠ 1=∠ 2 (PM is a bisector of LP) 

∠ 3 = ∠ 9 (exterior angle of cydic quad. = interior opposite angle) 

∴ ∠ 4 = ∠ 7 

But, ∠ 4 = ∠ 8 (vertical opposite angles) 

∴ ∠ 7 = ∠ 8 

Now in Δ QMN and Δ QML 

∠ 7 = ∠ 8 (proved above) 

∠ S = ∠ 6 (QM is bisector of Q) 

∴ Δ QMN ~ Δ QML 

⇒ ∠ QMN and ∠ QML 

But, ∠ QMN + ∠ QML = 180° 

∴ ∠ QMN = ∠ QML = 90° 

Hence, ∠ PMQ = 90 °

shaalaa.com
  क्या इस प्रश्न या उत्तर में कोई त्रुटि है?
अध्याय 17: Circles - Exercise 17.2

APPEARS IN

फ्रैंक Mathematics - Part 2 [English] Class 10 ICSE
अध्याय 17 Circles
Exercise 17.2 | Q 16

वीडियो ट्यूटोरियलVIEW ALL [3]

Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×