हिंदी

परवलय y2 = 4ax, के अंतर्गत एक समबाहु त्रिभुज है जिसका एक शीर्ष परवलय का शीर्ष है। त्रिभुज की भुजा की लंबाई ज्ञात कीजिए। - Mathematics (गणित)

Advertisements
Advertisements

प्रश्न

परवलय y2 = 4ax, के अंतर्गत एक समबाहु त्रिभुज है जिसका एक शीर्ष परवलय का शीर्ष है। त्रिभुज की भुजा की लंबाई ज्ञात कीजिए।

योग

उत्तर

परवलय y2 = 4ax, एक समबाहु त्रिभुज बनाई गई है।

मान लीजिए इसकी भुजा की लंबाई p है।

Δ OLP में OL2 = OP2 + LP2

p2 = `"OP"^2 + ("p"/2)^2`

∴ OP2 = `"p"^2 - "p"^2/4 = 3/4"p"`

∴ L के निर्देशांक `(sqrt3/2, "p"/2)` हैं।

यह परवलय y2 = 4ax पर स्थित है।

∴ `("p"/2)^2 = 4"a". (sqrt3/2"p")`

या `"p"^2/4 = 4"a" . sqrt3/2 "p"`

p = `8sqrt3"a"`

अतः समबाहु त्रिभुज की भुजा की लंबाई `8sqrt3"a"` है।

shaalaa.com
परवलय - परवलय का प्रमाणिक समीकरण
  क्या इस प्रश्न या उत्तर में कोई त्रुटि है?
अध्याय 11: शंकु परिच्छेद - अध्याय 11 पर विविध प्रश्नावली [पृष्ठ २८०]

APPEARS IN

एनसीईआरटी Mathematics [Hindi] Class 11
अध्याय 11 शंकु परिच्छेद
अध्याय 11 पर विविध प्रश्नावली | Q 8. | पृष्ठ २८०

संबंधित प्रश्न

निम्नलिखित प्रश्न में परवलय का समीकरण ज्ञात कीजिए जो दिए प्रतिबंध को संतुष्ट करता है:

नाभि (6, 0), नियता x = –6


निम्नलिखित प्रश्न में परवलय का समीकरण ज्ञात कीजिए जो दिए प्रतिबंध को संतुष्ट करता है:

नाभि (0, –3), नियता y = 3


निम्नलिखित प्रश्न में परवलय का समीकरण ज्ञात कीजिए जो दिए प्रतिबंध को संतुष्ट करता है:

शीर्ष (0, 0), नाभि (3, 0) 


निम्नलिखित प्रश्न में परवलय का समीकरण ज्ञात कीजिए जो दिए प्रतिबंध को संतुष्ट करता है:

शीर्ष (0, 0), नाभि (−2, 0)


निम्नलिखित प्रश्न में परवलय का समीकरण ज्ञात कीजिए जो दिए प्रतिबंध को संतुष्ट करता है:

शीर्ष (0, 0), (2, 3) से जाता है और अक्ष, x-अक्ष के अनुदिश है।


निम्नलिखित प्रश्न में परवलय का समीकरण ज्ञात कीजिए जो दिए प्रतिबंध को संतुष्ट करता है:

शीर्ष (0, 0), (5, 2) से जाता है और y-अक्ष के सापेक्ष सममित है।


निम्नलिखित प्रश्न में, दिए प्रतिबंधों को संतुष्ट करते हुए दीर्घवृत्त का समीकरण ज्ञात कीजिए:

दीर्घ अक्ष की लंबाई = 16, नाभियाँ (0, ±6)


निम्नलिखित प्रश्न में, दिए प्रतिबंधों को संतुष्ट करते हुए दीर्घवृत्त का समीकरण ज्ञात कीजिए:

नाभियाँ (±3, 0), a = 4


निम्नलिखित प्रश्न में, दिए प्रतिबंधों को संतुष्ट करते हुए दीर्घवृत्त का समीकरण ज्ञात कीजिए:

b = 3, c = 4, केंद्र मूल बिंदु पर, नाभियाँ x-अक्ष पर है।


निम्नलिखित प्रश्न में, दिए प्रतिबंधों को संतुष्ट करते हुए दीर्घवृत्त का समीकरण ज्ञात कीजिए:

केंद्र (0, 0) पर, दीर्घ अक्ष y-अक्ष पर और बिंदुओं (3, 2) और (1, 6) से जाता है।


निम्नलिखित प्रश्न में, दिए प्रतिबंधों को संतुष्ट करते हुए दीर्घवृत्त का समीकरण ज्ञात कीजिए:

दीर्घ अक्ष,x-अक्ष पर और बिंदुओं (4, 3), (6, 2) से जाता है।


यदि एक परवलयाकार परावर्तक का व्यास 20 सेमी और गहराई 5 सेमी है। नाभि ज्ञात कीजिए।


एक मेहराब परवलय के आकार का है और इसका अक्ष ऊर्ध्वाधर है। मेहराब 10 मीटर ऊँचा है और आधार में 5 मीटर चौड़ा है। यह, परवलय के दो मीटर की दूरी पर शीर्ष से कितना चौड़ा होगा?


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×