Advertisements
Advertisements
प्रश्न
Show that the equation of the line passing through the origin and making an angle θ with the line `y = mx + c " is " y/c = (m+- tan theta)/(1 +- m tan theta)`.
उत्तर
The equation of line PA is y = mx + c
This line makes an angle θ with OP.
Slope of line PA = m
Let slope of OP = m1.
Now tan θ = ± `("m"_1 - "m")/(1 + "m"_1"m")`, where m = tan θ
Taking +ve sign, tan θ = ± `("m"_1 - "m")/(1 + "m"_1"m")`
or `(1 + "m"_1"m")tan θ = "m"_1 - "m"`
or tan θ + m1 m tan θ = m1 - m
or m + tan θ = m(1 - m tan θ)
or `"m"_1 = ("m" + tan θ)/(1 - "m" tan θ)`
Taking -ve sign,
`"m"_1 = ("m" + tan θ)/(1 - "m" tan θ)`
`(- 1 + "m"_1"m") tan θ = "m"_1 - "m"`
or (1 + m1m) tan θ = −m1 + m
m1(1 + m tan θ) = m − tan θ
∴ `"m"_1 = ("m" - tan θ)/(1 + "m" tan θ)`
Therefore, both slopes are represented by `("m" ± tan θ)/(1 "m" ± tan θ)`.
∴ The equation of the line passing through the origin (0, 0),
(y - 0) = m1 (x - 0)
y =m1 × x
or `"y"/"x" = "m"_1`
∴ equation of required lines
`"y"/"x" = ("m" ± tan θ)/(1 ± tan θ)`
APPEARS IN
संबंधित प्रश्न
Find equation of the line parallel to the line 3x – 4y + 2 = 0 and passing through the point (–2, 3).
Find angles between the lines `sqrt3x + y = 1 and x + sqrt3y = 1`.
Two lines passing through the point (2, 3) intersects each other at an angle of 60°. If slope of one line is 2, find equation of the other line.
Find the equation of the right bisector of the line segment joining the points (3, 4) and (–1, 2).
The perpendicular from the origin to the line y = mx + c meets it at the point (–1, 2). Find the values of m and c.
In the triangle ABC with vertices A (2, 3), B (4, –1) and C (1, 2), find the equation and length of altitude from the vertex A.
In what ratio, the line joining (–1, 1) and (5, 7) is divided by the line x + y = 4?
Find equation of the line which is equidistant from parallel lines 9x + 6y – 7 = 0 and 3x + 2y + 6 = 0.
Find the equation of a line which makes an angle of tan−1 (3) with the x-axis and cuts off an intercept of 4 units on negative direction of y-axis.
Find the equation of the line which intercepts a length 2 on the positive direction of the x-axis and is inclined at an angle of 135° with the positive direction of y-axis.
Find the equation of the right bisector of the line segment joining the points (3, 4) and (−1, 2).
For what values of a and b the intercepts cut off on the coordinate axes by the line ax + by + 8 = 0 are equal in length but opposite in signs to those cut off by the line 2x − 3y + 6 = 0 on the axes.
Find the equation of the line on which the length of the perpendicular segment from the origin to the line is 4 and the inclination of the perpendicular segment with the positive direction of x-axis is 30°.
The length of the perpendicular from the origin to a line is 7 and the line makes an angle of 150° with the positive direction of Y-axis. Find the equation of the line.
Find the equation of a straight line on which the perpendicular from the origin makes an angle of 30° with x-axis and which forms a triangle of area \[50/\sqrt{3}\] with the axes.
Find the point of intersection of the following pairs of lines:
2x − y + 3 = 0 and x + y − 5 = 0
Find the point of intersection of the following pairs of lines:
\[y = m_1 x + \frac{a}{m_1} \text { and }y = m_2 x + \frac{a}{m_2} .\]
Find the coordinates of the vertices of a triangle, the equations of whose sides are x + y − 4 = 0, 2x − y + 3 = 0 and x − 3y + 2 = 0.
Find the area of the triangle formed by the line y = m1 x + c1, y = m2 x + c2 and x = 0.
Find the equations of the medians of a triangle, the equations of whose sides are:
3x + 2y + 6 = 0, 2x − 5y + 4 = 0 and x − 3y − 6 = 0
Prove that the lines \[y = \sqrt{3}x + 1, y = 4 \text { and } y = - \sqrt{3}x + 2\] form an equilateral triangle.
Prove that the following sets of three lines are concurrent:
15x − 18y + 1 = 0, 12x + 10y − 3 = 0 and 6x + 66y − 11 = 0
Prove that the following sets of three lines are concurrent:
3x − 5y − 11 = 0, 5x + 3y − 7 = 0 and x + 2y = 0
If the lines p1 x + q1 y = 1, p2 x + q2 y = 1 and p3 x + q3 y = 1 be concurrent, show that the points (p1, q1), (p2, q2) and (p3, q3) are collinear.
Find the image of the point (2, 1) with respect to the line mirror x + y − 5 = 0.
If the image of the point (2, 1) with respect to the line mirror be (5, 2), find the equation of the mirror.
If a ≠ b ≠ c, write the condition for which the equations (b − c) x + (c − a) y + (a − b) = 0 and (b3 − c3) x + (c3 − a3) y + (a3 − b3) = 0 represent the same line.
The number of real values of λ for which the lines x − 2y + 3 = 0, λx + 3y + 1 = 0 and 4x − λy + 2 = 0 are concurrent is
A (6, 3), B (−3, 5), C (4, −2) and D (x, 3x) are four points. If ∆ DBC : ∆ ABC = 1 : 2, then x is equal to
Find the equation of a line which passes through the point (2, 3) and makes an angle of 30° with the positive direction of x-axis.
Find the equation of the straight line which passes through the point (1, – 2) and cuts off equal intercepts from axes.
If the line `x/"a" + y/"b"` = 1 passes through the points (2, –3) and (4, –5), then (a, b) is ______.
If the coordinates of the middle point of the portion of a line intercepted between the coordinate axes is (3, 2), then the equation of the line will be ______.
A line passes through (2, 2) and is perpendicular to the line 3x + y = 3. Its y-intercept is ______.
Reduce the following equation into intercept form and find their intercepts on the axes.
4x – 3y = 6