हिंदी

State how a moving coil galvanometer can be converted into an ammeter. - Physics

Advertisements
Advertisements

प्रश्न

State how a moving coil galvanometer can be converted into an ammeter.

How will you convert a moving coil galvanometer into an ammeter?

Briefly explain why and how a galvanometer is converted into an ammeter.

संक्षेप में उत्तर

उत्तर १

  1. A moving-coil galvanometer is transformed into an ammeter by connecting a low-resistance S across the coil and lowering its effective resistance.
  2. A shunt is a parallel low resistance that shunts a portion of the current around the coil, as seen in the image below. As a result, the range of currents over which the metre can be used is expanded.

                           Ammeter
  3. Let I be the maximum current to be measured and Ig be the current for which the galvanometer of resistance G shows a full-scale deflection. Then, the shunt resistance S should be such that the remaining current I - Ig = IS is shunted through it.
  4. The potential difference across the galvanometer in the parallel combination is equivalent to the potential difference across the shunt.
    ∴ IgG = IsS = (I - Ig)S
    ∴ S = `("I"_"g"/("I" - "I"_"g"))"G"`
shaalaa.com

उत्तर २

Only small currents may be detected by a galvanometer. Thus, it is transformed into an ammeter to measure enormous currents. By joining a low resistance known as a shunt resistance in parallel with the galvanometer, it can be transformed into an ammeter.

Let S be the low resistance connected in parallel with the galvanometer, G be the resistance of the galvanometer, and I be the maximum current to be measured for full-scale deflection in the galvanometer. Since the galvanometer and shunt resistances are connected in parallel.

∴ The potential difference across 'S' = Potential difference across G

(I - lg)S = lgG

 

shaalaa.com

Notes

Students should refer to the answer according to their questions and marks.

  क्या इस प्रश्न या उत्तर में कोई त्रुटि है?
2015-2016 (March) Set 1

वीडियो ट्यूटोरियलVIEW ALL [2]

संबंधित प्रश्न

A rectangular coil of a moving coil galvanometer contains 50 turns each having area 12 cm2 . It is suspended in radial magnetic field 0.025 Wb/m2 by a fibre of twist constant 15 x10-10 Nm/degree. Calculate the sensitivity of the moving coil galvanometer.


A circular coil of 250 turns and diameter 18 cm carries a current of 12A. What is the magnitude of magnetic moment associated with the coil?


A galvanometer of resistance G is converted into a voltmeter to measure upto V volts by connecting a resistance R1 in series with the coil. If a resistance R2 is connected in series with it, then it can measures upto V/2 volts. Find the resistance, in terms of R1 and R2, required to be connected to convert it into a voltmeter that can read upto 2 V. Also find the resistance G of the galvanometer in terms of R1 and R2


Draw a labelled diagram of a moving coil galvanometer. Describe briefly its principle and working.


Why is it necessary to introduce a cylindrical soft iron core inside the coil of a galvanometer?


Increasing the current sensitivity of a galvanometer may not necessarily increase its voltage sensitivity. Explain, giving reason.


Two moving coil meters, M1 and M2 have the following particulars:

R1 = 10 Ω, N1 = 30,

A1 = 3.6 × 10–3 m2, B1 = 0.25 T

R2 = 14 Ω, N2 = 42,

A2 = 1.8 × 10–3 m2, B2 = 0.50 T

(The spring constants are identical for the two meters).

Determine the ratio of

  1. current sensitivity and
  2. voltage sensitivity of M2 and M1.

  1. A circular coil of 30 turns and radius 8.0 cm carrying a current of 6.0 A is suspended vertically in a uniform horizontal magnetic field of magnitude 1.0 T. The field lines make an angle of 60° with the normal of the coil. Calculate the magnitude of the counter torque that must be applied to prevent the coil from turning.
  2. Would your answer change, if the circular coil in (a) were replaced by a planar coil of some irregular shape that encloses the same area? (All other particulars are also unaltered.)

Explain how moving coil galvanometer is converted into a voltmeter. Derive the necessary formula.


A rectangular coil of a moving coil galvanometer contains 100 turns, each having area
15 cm2. It is suspended in the radial magnetic field 0.03 T. The twist constant of suspension
fibre is 15 x 10-10 N-m/degree. Calculate the sensitivity of the moving coil galvanometer.


A moving coil galvanometer has a resistance of 25Ω and gives a full scale deflection for a current of 10mA. How will you convert it into a voltmeter having range 0 - 100 V?


A galvanometer has a resistance of 16Ω. It shows full scale deflection, when a current of 20 mA is passed through it. The only shunt resistance available is 0.06  which is not appropriate to convert a galvanometer into an ammeter. How much resistance should be connected in series with the coil of galvanometer, so that the range of ammeter is 8 A?


Can a galvanometer as such be used for measuring the current? Explain.


Why does a galvanometer when connected in series with a capacitor show a momentary deflection, when it is being charged or discharged?

How does this observation lead to modifying the Ampere's circuital law?

Hence write the generalised expression of Ampere's law.


Explain, giving reasons, the basic difference in converting a galvanometer into (i) a voltmeter and (ii) an ammeter?


Draw a labelled diagram of a moving coil galvanometer and explain its working. What is the function of radial magnetic field inside the coil?


State the underlying principle of working of a moving coil galvanometer. Write two reasons why a galvanometer can not be used as such to measure current in a given circuit. Name any two factors on which the current sensitivity of a galvanometer depends.


What are the advantages of using soft iron as a core, instead of steel, in the coils of galvanometers?


A moving coil galvanometer has a coil of resistance 59 Ω. It shows a full-scale deflection for a current of 50 mA. How will you convert it to an ammeter having a range of 0 to 3A?


Define the term 'current sensitivity' of a moving coil galvanometer.


A galvanometer coil has a resistance of 12 Ω and the metre shows full scale deflection for a current of 3 mA. How will you convert the metre into a voltmeter of range 0 to 18 V?


A galvanometer coil has a resistance of 15 Ω and the metre shows full scale deflection for a current of 4 mA. How will you convert the metre into an ammeter of range 0 to 6 A?


The AC voltage across a resistance can be measured using a ______.


The deflection in a moving coil galvanometer is ______.


The current sensitivity of a galvanometer is defined as ______.


A moving coil galvanometer has N number of turns in a coil of effective area A, it carries a current I. The magnetic field B is radial. The torque acting on the coil is ______.

To make the field radial in a moving coil galvanometer ______.

In a moving coil galvanometer, the deflection of the coil θ is related to the elecrical current i by the relation ______.

In a moving coil galvanometer the deflection (Φ) on the scale by a pointer attached to the spring is ______.


A moving coil galvanometer can be converted into an ammeter by ______.


The coil of a moving coil galvanometer is wound over a metal frame in order to ______.


The current sensitivity of a galvanometer increase by 20%. If its resistance also increases by 25%, the voltage sensitivity will ______.


Assertion (A): On Increasing the current sensitivity of a galvanometer by increasing the number of turns may not necessarily increase its voltage sensitivity.

Reason (R): The resistance of the coil of the galvanometer increases on increasing the number of turns.

Select the most appropriate answer from the options given below:


A galvanometer having a coil resistance of 60 Ω shows full-scale deflection when a current of 1.0 amp passes through it. It can be converted into an ammeter to read currents up to 5.0 amp by:


In an ammeter 0.5% of main current passes through galvanometer; If resistance of galvanometer is G, the resistance of ammeter will be.


The coil of galvanometer consists of 100 turns and effective area of 1 square cm. The restoring couple is 10-8 N-m/rad. The magnetic field between the pole pieces is 5T. The current sensitivity of this galvanometer will be ______.


A multirange current meter can be constructed by using a galvanometer circuit as shown in figure. We want a current meter that can measure 10 mA, 100 mA and 1A using a galvanometer of resistance 10 Ω and that prduces maximum deflection for current of 1mA. Find S1, S2 and S3 that have to be used


A galvanometer coil bas 500 turns and each tum has an average area of 3 × 10-4 m2. If a torque of 1.5 Nm is required to keep this coil parallel to a magnetic field when a current of 0.5 A is flowing through it, the strength of the field (in T) is ______.


A galvanometer having a resistance of 20 Ω and 30 Ω division on both sides has figure of merit 0.005 ampere/division. The resistance that should be connected in series such that it can be used as a voltmeter upto 15 volt, is ______.


How is current sensitivity increased?


Explain in brief the basic construction of a moving-coil table galvanometer whit a neat labelled diagram.


A resistance of 3Ω is connected in parallel to a galvanometer of resistance 297Ω. Find the fraction of current passing through the galvanometer.


A voltmeter has a range of 0 - 20 V and a resistance of 500 Q. Explain how can be used to measure voltages from 0 - 200 volt?


To convert a moving coil galvanometer into an ammeter we need to connect a ______.


Assertion: When an electric current is passed through a moving coil galvanometer, its coil gets deflected.

Reason: A circular coil produces a uniform magnetic field around itself when an electric current is passed through it.


The figure below shows a circuit containing an ammeter A, a galvanometer G and a plug key K. When the key is closed:


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×