हिंदी
कर्नाटक बोर्ड पी.यू.सी.पीयूसी विज्ञान कक्षा ११

Two Friends A And B (Each Weighing 40 Kg) Are Sitting on a Frictionless Platform Some Distance D Apart. A Rolls a Ball of Mass 4 Kg on the Platform Towards B Which B Catches. - Physics

Advertisements
Advertisements

प्रश्न

Two friends A and B (each weighing 40 kg) are sitting on a frictionless platform some distance d apart. A rolls a ball of mass 4 kg on the platform towards B which B catches. Then B rolls the ball towards A and A catches it. The ball keeps on moving back and forth between A and B. The ball has a fixed speed of 5 m/s on the platform. (a) Find the speed of A after he catches the ball for the first time. (c) Find the speeds of A and Bafter the all has made 5 round trips and is held by A. (d) How many times can A roll the ball? (e) Where is the centre of mass of the system "A + B + ball" at the end of the nth trip? 

योग

उत्तर

It is given that:
Weight of A = Weight of B = 40 kg
Velocity of ball = 5 m/s
(a) Case-1: Total momentum of the man A and ball remains constant.
∴ 0 = 4 × 5 − 40 × v
⇒ v = 0.5 m/s, towards left
(b) Case-2: When B catches the ball, the momentum between B and the ball remains constant.
 ⇒ 4 × 5 = 44 v
⇒ \[v = \left( \frac{20}{44} \right)\text{ m/s}\]
Case-3: When B throws the ball,
On applying the law of conservation of linear momentum, we get:

\[\Rightarrow 44 \times \left( \frac{20}{44} \right) = - 4 \times 5 + 40 \times v\]

\[ \Rightarrow v = 1 \text{ m/s , towards right)}\]

Case-4: When A catches the ball,

Applying the law of conservation of liner momentum, we get:

\[- 4 \times 5 + ( - 0 . 5) \times 40 = 44 v\]

\[ \Rightarrow v = \frac{40}{44} = \frac{10}{11}\text{ m/s, towards left}\]
(c) Case-5: When A throws the ball,

 Applying the law of conservation of linear momentum, we get:

\[44 \times \left( \frac{10}{11} \right) = 4 \times 5 + 40 \times v\]

\[ \Rightarrow v = \frac{60}{40} = \frac{3}{2} \text{ m/s towards left)}\]

Case-6: When B receives the ball,

Applying  the law of conservation of linear momentum, we get:

\[40 \times 1 + 4 \times 5 = 44 \times v\]

\[ \Rightarrow v = \frac{60}{44} \text{ m/s, towards right }\]

Case-7: When B throws the ball,

On applying the law of conservation of linear momentum, we get:
\[\Rightarrow v = 44 \times \left( \frac{60}{44} \right) \text{ m/s, towards right }\]
Case-8: When A catches the ball,

On applying the law of conservation of linear momentum, we get:

\[- 4 \times 5 + 40\left( \frac{3}{2} \right) = - 44v\]

\[ \Rightarrow V = - \frac{40}{44} = $\left( \frac{10}{11} \right) \text{ m/s,towards left } \]

Similarly, after 5 round trips,
The velocity of A will be \[\left( \frac{50}{11} \right)\] m/s and the velocity of B will be 5 m/s.

(d) As after 6 round trips, the velocity of A becomes \[\frac{60}{11}\] > 5 m/s, it cannot catch the ball. Thus, A can only roll the ball six times. 
(e) Let the ball and the body A be at origin, in the initial position.

\[\therefore X_c = \frac{40 \times 0 + 4 \times 0 + 40 \times d}{40 + 40 + 4}\]

\[ = \frac{10}{21}d\]

shaalaa.com
Momentum Conservation and Centre of Mass Motion
  क्या इस प्रश्न या उत्तर में कोई त्रुटि है?
अध्याय 9: Centre of Mass, Linear Momentum, Collision - Exercise [पृष्ठ १६२]

APPEARS IN

एचसी वर्मा Concepts of Physics Vol. 1 [English] Class 11 and 12
अध्याय 9 Centre of Mass, Linear Momentum, Collision
Exercise | Q 38 | पृष्ठ १६२

संबंधित प्रश्न

Two bodies make an elastic head-on collision on a smooth horizontal table kept in a car. Do you expect a change in the result if the car is accelerated in a horizontal road because of the non inertial character of the frame? Does the equation "Velocity of separation = Velocity of approach" remain valid in an accelerating car? Does the equation "final momentum = initial momentum" remain valid in the accelerating car?


If the linear momentum of a particle is known, can you find its kinetic energy? If the kinetic energy of a particle is know can you find its linear momentum?


Use the definition of linear momentum from the previous question. Can we state the principle of conservation of linear momentum for a single particle?


Consider the following two statements:

(A) Linear momentum of a system of particles is zero.

(B) Kinetic energy of a system of particles is zero.


A bullet hits a block kept at rest on a smooth horizontal surface and gets embedded into it. Which of the following does not change?


A ball hits a floor and rebounds after an inelastic collision. In this case
(a) the momentum of the ball just after the collision is same as that just before the collision
(b) the mechanical energy of the ball remains the same during the collision
(c) the total momentum of the ball and the earth is conserved
(d) the total energy of the ball and the earth remains the same


A uranium-238 nucleus, initially at rest, emits an alpha particle with a speed of 1.4 × 107m/s. Calculate the recoil speed of the residual nucleus thorium-234. Assume that the mass of a nucleus is proportional to the mass number.


A neutron initially at rest, decays into a proton, an electron, and an antineutrino. The ejected electron has a momentum of 1.4 × 10−26 kg-m/s and the antineutrino 6.4 × 10−27kg-m/s.

Find the recoil speed of the proton

(a) if the electron and the antineutrino are ejected along the same direction and

(b) if they are ejected along perpendicular directions. Mass of the proton = 1.67 × 10−27 kg. 


Consider a head-on collision between two particles of masses m1 and m2. The initial speeds of the particles are u1 and u2 in the same direction. the collision starts at t = 0 and the particles interact for a time interval ∆t. During the collision, the speed of the first particle varies as \[v(t) = u_1 + \frac{t}{∆ t}( v_1 - u_1 )\]
Find the speed of the second particle as a function of time during the collision. 


A ball of mass m moving at a speed v makes a head-on collision with an identical ball at rest. The kinetic energy of the balls after the collision is three fourths of the original. Find the coefficient of restitution.  


A bullet of mass 25 g is fired horizontally into a ballistic pendulum of mass 5.0 kg and gets embedded in it. If the centre of the pendulum rises by a distance of 10 cm, find the speed of the bullet.


Two mass m1 and m2 are connected by a spring of spring constant k and are placed on a frictionless horizontal surface. Initially the spring is stretched through a distance x0 when the system is released from rest. Find the distance moved by the two masses before they again come to rest. 


Two blocks of masses m1 and m2 are connected by a spring of spring constant k (See figure). The block of mass m2 is given a sharp impulse so that it acquires a velocity v0 towards right. Find (a) the velocity of the centre of mass, (b) the maximum elongation that the spring will suffer.


The blocks shown in figure have equal masses. The surface of A is smooth but that of Bhas a friction coefficient of 0.10 with the floor. Block A is moving at a speed of 10 m/s towards B which is kept at rest. Find the distance travelled by B if (a) the collision is perfectly elastic and (b) the collision is perfectly inelastic. 


A small disc is set rolling with a speed \[\nu\] on the horizontal part of the track of the previous problem from right to left. To what height will it climb up the curved part?


A sphere starts rolling down an incline of inclination θ. Find the speed of its centre when it has covered a distance l.


A solid sphere of mass m is released from rest from the rim of a hemispherical cup so that it rolls along the surface. If the rim of the hemisphere is kept horizontal, find the normal force exerted by the cup on the ball when the ball reaches the bottom of the cup.


The following figure shows a rough track, a portion of which is in the form of a cylinder of radius R. With what minimum linear speed should a sphere of radius r be set rolling on the horizontal part so that it completely goes round the circle on the cylindrical part.


A thin spherical shell of radius R lying on a rough horizontal surface is hit sharply and horizontally by a cue. Where should it be hit so that the shell does not slip on the surface?


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×