हिंदी

Write the following equation in ax + by + c = 0 form. x3-y2 = 0 - Mathematics and Statistics

Advertisements
Advertisements

प्रश्न

Write the following equation in ax + by + c = 0 form.

`x/3 - y/2` = 0

योग

उत्तर

`x/3 - y/2` = 0

∴ 2x – 3y = 0

∴ 2x – 3y + 0 = 0

which is of the form ax + by + c = 0.

shaalaa.com
General Form of Equation of a Line
  क्या इस प्रश्न या उत्तर में कोई त्रुटि है?
अध्याय 5: Straight Line - Exercise 5.4 [पृष्ठ १२२]

APPEARS IN

बालभारती Mathematics and Statistics 1 (Arts and Science) [English] 11 Standard Maharashtra State Board
अध्याय 5 Straight Line
Exercise 5.4 | Q 2. (d) | पृष्ठ १२२

संबंधित प्रश्न

Find the slope, X-intercept, Y-intercept of the following line:

x + 2y = 0


Write the following equation in ax + by + c = 0 form.

y = 4


Write the following equation in ax + by + c = 0 form.

`x/2 + y/4` = 1


Show that lines x – 2y – 7 = 0 and 2x − 4y + 15 = 0 are parallel to each other


If the line 3x + 4y = p makes a triangle of area 24 square unit with the co-ordinate axes then find the value of p.


Find the co-ordinates of the foot of the perpendicular drawn from the point A(–2, 3) to the line 3x – y – 1 = 0


Find the co-ordinates of the circumcenter of the triangle whose vertices are A(–2, 3), B(6, –1), C(4, 3).


Find the co-ordinates of the orthocenter of the triangle whose vertices are A(3, –2), B(7, 6), C(–1, 2).


Show that lines 3x − 4y + 5 = 0, 7x − 8y + 5 = 0, and 4x + 5y − 45 = 0 are concurrent. Find their point of concurrence


Find the equation of the line whose X-intercept is 3 and which is perpendicular to the line 3x − y + 23 = 0.


Find the distance of the point A(−2, 3) from the line 12x − 5y − 13 = 0 


Find the distance between parallel lines 4x − 3y + 5 = 0 and 4x − 3y + 7 = 0


Find points on the line x + y − 4 = 0 which are at one unit distance from the line 4x + 3y – 10 = 0.


Find the equation of the line parallel to the X-axis and passing through the point of intersection of lines x + y − 2 = 0 and 4x + 3y = 10


D(−1, 8), E(4, −2), F(−5, −3) are midpoints of sides BC, CA and AB of ∆ABC Find equations of sides of ∆ABC


Select the correct option from the given alternatives:

Distance between the two parallel lines y = 2x + 7 and y = 2x + 5 is


Answer the following question:

Which of the following lines passes through the origin?


Answer the following question:

Obtain the equation of the line which is parallel to the X−axis and making an intercept of 5 on the Y−axis.


Answer the following question:

Obtain the equation of the line which is parallel to the Y−axis and making an intercept of 3 on the X−axis.


Answer the following question:

Find the distance between the parallel lines 3x + 4y + 3 = 0 and 3x + 4y + 15 = 0


Answer the following question:

Find the equation of the line which passes through the point of intersection of lines x + y − 3 = 0, 2x − y + 1 = 0 and which is parallel X-axis


Answer the following question:

Find the equation of the line which passes through the point of intersection of lines x + y + 9 = 0, 2x + 3y + 1 = 0 and which makes X-intercept 1.


Answer the following question:

Find the distance of P(−1, 1) from the line 12(x + 6) = 5(y − 2)


Answer the following question:

Find points on the X-axis whose distance from the line `x/3 + y/4` = 1 is 4 unit


For the lines 5x + 2y = 8 and 5x - 2y = 7, which of the following statement is true?


The length of perpendicular from (1, 3) on line 3x + 4y + 10 = 0, is ______ 


The equation 12x2 + 7xy + ay2 + 13x - y + 3 = 0 represents a pair of perpendicular lines. Then the value of 'a' is ______  


The equation 3x2 - 4xy + y2 = 0 represent a pair of straight lines whose slopes differ by ______.


If a plane has x-intercept l, y-intercept m and z-intercept n, and perpendicular distance of plane from the origin is k, then _______.


The length of the perpendicular from the origin on the line `(xsinalpha)/"b" - (ycosalpha)/"a" - 1 = 0` is ______.


Find the distance of the origin from the line 7x + 24y – 50 = 0 is:


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×