हिंदी

Answer the following question: Find the equation of the line which passes through the point of intersection of lines x + y − 3 = 0, 2x − y + 1 = 0 and which is parallel X-axis - Mathematics and Statistics

Advertisements
Advertisements

प्रश्न

Answer the following question:

Find the equation of the line which passes through the point of intersection of lines x + y − 3 = 0, 2x − y + 1 = 0 and which is parallel X-axis

योग

उत्तर

Since the required line passes through the point of intersection of x + y − 3 = 0 and 2x − y + 1 = 0, its equation is of the form.

(x + y − 3) + k(2x − y + 1) = 0    ...(1)

i.e., (1 + 2k)x + (1 − k)y − (−3 + k) = 0

Slope of this line = `(-(1 + 2"k"))/(1 - "k")`

Since it is parallel to X-axis, its slope = 0

∴ `(-(1 + 2"k"))/(1 - "k")` = 0

∴ 1 + 2k = 0

∴ k = `-1/2`

Substituting k = `(-1)/2` in (1), we get

`(x + y - 3) + ((-1)/2) (2x - y + 1)` = 0

∴ 2x + 2y − 6 − 2x + y − 1 = 0

∴ 3y − 7 = 0

This is the equation of required line.

shaalaa.com
General Form of Equation of a Line
  क्या इस प्रश्न या उत्तर में कोई त्रुटि है?
अध्याय 5: Straight Line - Miscellaneous Exercise 5 [पृष्ठ १२५]

APPEARS IN

बालभारती Mathematics and Statistics 1 (Arts and Science) [English] 11 Standard Maharashtra State Board
अध्याय 5 Straight Line
Miscellaneous Exercise 5 | Q II. (14) | पृष्ठ १२५

संबंधित प्रश्न

Write the following equation in ax + by + c = 0 form.

y = 2x – 4


Write the following equation in ax + by + c = 0 form.

y = 4


Write the following equation in ax + by + c = 0 form.

`x/2 + y/4` = 1


Write the following equation in ax + by + c = 0 form.

`x/3 - y/2` = 0


Find the co-ordinates of the orthocenter of the triangle whose vertices are A(3, –2), B(7, 6), C(–1, 2).


Find the equation of the line whose X-intercept is 3 and which is perpendicular to the line 3x − y + 23 = 0.


Find the distance between parallel lines 4x − 3y + 5 = 0 and 4x − 3y + 7 = 0


Find the distance between parallel lines 9x + 6y − 7 = 0 and 3x + 2y + 6 = 0


Find the equation of the line parallel to the X-axis and passing through the point of intersection of lines x + y − 2 = 0 and 4x + 3y = 10


Find the equation of the line passing through the point of intersection of lines x + y − 2 = 0 and 2x − 3y + 4 = 0 and making intercept 3 on the X-axis


If A(4, 3), B(0, 0), and C(2, 3) are the vertices of ∆ABC then find the equation of bisector of angle BAC.


D(−1, 8), E(4, −2), F(−5, −3) are midpoints of sides BC, CA and AB of ∆ABC Find co-ordinates of the circumcenter of ΔABC


O(0, 0), A(6, 0) and B(0, 8) are vertices of a triangle. Find the co-ordinates of the incenter of ∆OAB


Select the correct option from the given alternatives:

If A(1, −2), B(−2, 3) and C(2, −5) are the vertices of ∆ABC, then the equation of the median BE is


Select the correct option from the given alternatives:

Distance between the two parallel lines y = 2x + 7 and y = 2x + 5 is


Answer the following question:

Find the distance of the origin from the line x = – 2


Answer the following question:

Obtain the equation of the line which is parallel to the X−axis and 3 unit below it.


Answer the following question:

Obtain the equation of the line which is parallel to the X−axis and making an intercept of 5 on the Y−axis.


Answer the following question:

Obtain the equation of the line which is parallel to the Y−axis and making an intercept of 3 on the X−axis.


Answer the following question:

Find the distance of the origin from the line 12x + 5y + 78 = 0


Answer the following question:

Find the distance between the parallel lines 3x + 4y + 3 = 0 and 3x + 4y + 15 = 0


Answer the following question:

Find the equation of the line which passes through the point of intersection of lines x + y + 9 = 0, 2x + 3y + 1 = 0 and which makes X-intercept 1.


Answer the following question:

Find the distance of P(−1, 1) from the line 12(x + 6) = 5(y − 2)


Answer the following question:

Find points on the X-axis whose distance from the line `x/3 + y/4` = 1 is 4 unit


Answer the following question:

Find the distance of the line 4x − y = 0 from the point P(4, 1) measured along the line making an angle of 135° with the positive X-axis


A particle is moving in a straight line according to as S = 24t + 3t2 - t3, then the time it will come to rest is ______ 


The y-intercept of the line passing through A( 6, 1) and perpendicular to the line x - 2y = 4 is ______.


Let the straight line x = b divide the area enclosed by y = (1 - x)2, y = 0 and x = 0 into two parts R1(0 ≤ x ≤ b) and R2 (b ≤ x ≤ 1) such that `R_1 - R_2 = 1/4`. Then b equals ______ 


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×