हिंदी

Answer the following question: Find the equation of the line which passes through the point of intersection of lines x + y + 9 = 0, 2x + 3y + 1 = 0 and which makes X-intercept 1. - Mathematics and Statistics

Advertisements
Advertisements

प्रश्न

Answer the following question:

Find the equation of the line which passes through the point of intersection of lines x + y + 9 = 0, 2x + 3y + 1 = 0 and which makes X-intercept 1.

योग

उत्तर

Let u ≡ x + y + 9 = 0 and v ≡ 2x + 3y + 1 = 0

Equation of the line passing through the point of intersection of lines u = 0 and v = 0 is given by u + kv = 0.

∴ (x + y + 9) + k(2x + 3y + 1) = 0  …(i)

∴ x + y + 9 + 2kx + 3ky + k = 0

∴ (1 + 2k)x + (1 + 3k)y + 9 + k = 0

But, X-intercept of this line is 1.

∴ `(-(9 + "k"))/(1 + 2"k")` = 1

∴ – 9 – k = 1 + 2k

∴ k = `(-10)/3`

Substituting the value of k in (i), we get

`(x + y + 9) + ((-10)/3) (2x + 3y + 1)` = 0

∴  3(x + y + 9) – 10(2x + 3y + 1) = 0

∴ 3x + 3y + 27 – 20x – 30y – 10 = 0

∴ – 17x – 27y + 17 = 0

∴ 17x + 27y – 17 = 0, which is the equation of the required line.

shaalaa.com
General Form of Equation of a Line
  क्या इस प्रश्न या उत्तर में कोई त्रुटि है?
अध्याय 5: Straight Line - Miscellaneous Exercise 5 [पृष्ठ १२५]

APPEARS IN

बालभारती Mathematics and Statistics 1 (Arts and Science) [English] 11 Standard Maharashtra State Board
अध्याय 5 Straight Line
Miscellaneous Exercise 5 | Q II. (15) | पृष्ठ १२५

संबंधित प्रश्न

Find the slope, X-intercept, Y-intercept of the following line:

2x + 3y – 6 = 0


Find the slope, X-intercept, Y-intercept of the following line:

3x − y − 9 = 0


Find the slope, X-intercept, Y-intercept of the following line:

x + 2y = 0


Write the following equation in ax + by + c = 0 form.

y = 2x – 4


Write the following equation in ax + by + c = 0 form.

`x/2 + y/4` = 1


Show that lines x – 2y – 7 = 0 and 2x − 4y + 15 = 0 are parallel to each other


Show that lines x − 2y − 7 = 0 and 2x + y + 1 = 0 are perpendicular to each other. Find their point of intersection


If the line 3x + 4y = p makes a triangle of area 24 square unit with the co-ordinate axes then find the value of p.


Find the co-ordinates of the foot of the perpendicular drawn from the point A(–2, 3) to the line 3x – y – 1 = 0


Find the co-ordinates of the circumcenter of the triangle whose vertices are A(–2, 3), B(6, –1), C(4, 3).


Find the co-ordinates of the orthocenter of the triangle whose vertices are A(3, –2), B(7, 6), C(–1, 2).


Show that lines 3x − 4y + 5 = 0, 7x − 8y + 5 = 0, and 4x + 5y − 45 = 0 are concurrent. Find their point of concurrence


Find the equation of the line whose X-intercept is 3 and which is perpendicular to the line 3x − y + 23 = 0.


Find the distance of the origin from the line 7x + 24y – 50 = 0


Find the distance between parallel lines 4x − 3y + 5 = 0 and 4x − 3y + 7 = 0


Find the equation of the line passing through the point of intersection of lines x + y − 2 = 0 and 2x − 3y + 4 = 0 and making intercept 3 on the X-axis


D(−1, 8), E(4, −2), F(−5, −3) are midpoints of sides BC, CA and AB of ∆ABC Find co-ordinates of the circumcenter of ΔABC


Select the correct option from the given alternatives:

The equation of a line, having inclination 120° with positive direction of X−axis, which is at a distance of 3 units from the origin is


Select the correct option from the given alternatives:

Distance between the two parallel lines y = 2x + 7 and y = 2x + 5 is


Answer the following question:

Obtain the equation of the line which is parallel to the X−axis and 3 unit below it.


Answer the following question:

Obtain the equation of the line which is parallel to the Y−axis and making an intercept of 3 on the X−axis.


Answer the following question:

Find the distance of the origin from the line 12x + 5y + 78 = 0


Answer the following question:

Find the distance between the parallel lines 3x + 4y + 3 = 0 and 3x + 4y + 15 = 0


Answer the following question:

Find the distance of P(−1, 1) from the line 12(x + 6) = 5(y − 2)


Answer the following question:

Find the distance of the line 4x − y = 0 from the point P(4, 1) measured along the line making an angle of 135° with the positive X-axis


A particle is moving in a straight line according to as S = 24t + 3t2 - t3, then the time it will come to rest is ______ 


For the lines 5x + 2y = 8 and 5x - 2y = 7, which of the following statement is true?


The length of perpendicular from (1, 3) on line 3x + 4y + 10 = 0, is ______ 


The equation 3x2 - 4xy + y2 = 0 represent a pair of straight lines whose slopes differ by ______.


If a plane has x-intercept l, y-intercept m and z-intercept n, and perpendicular distance of plane from the origin is k, then _______.


The length of the perpendicular from the origin on the line `(xsinalpha)/"b" - (ycosalpha)/"a" - 1 = 0` is ______.


Find the distance of the origin from the line 7x + 24y – 50 = 0 is:


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×