Advertisements
Advertisements
प्रश्न
Show that lines x − 2y − 7 = 0 and 2x + y + 1 = 0 are perpendicular to each other. Find their point of intersection
उत्तर
Slope of the line x − 2y − 7 = 0 is
m1 = `-"coefficient of x"/"coefficient of y" = -1/((-2)) = 1/2`
Slope of the line 2x + y + 1 = 0 is
m2 = `-"coefficient of x"/"coefficient of y" = -2/1` = − 2
Since m1 = m2 = `1/2(-2)` = − 1 the lines are perpendicular to each other.
To find the point of intersection, we have to solve
x − 2y − 7 = 0 ...(1)
and 2x + y + 1 = 0 ...(2)
Multiplying equation (2) by 2, we get
4x + 2y + 2 = 0 ...(3)
Adding equations (1) and (3), we get
5x − 5 = 0
∴ x = 1
∴ from (2), 2(1) + y + 1 = 0
∴ y = −3
Hence, the point of intersection of the lines is (1, −3).
APPEARS IN
संबंधित प्रश्न
Find the slope, X-intercept, Y-intercept of the following line:
3x − y − 9 = 0
Find the slope, X-intercept, Y-intercept of the following line:
x + 2y = 0
Write the following equation in ax + by + c = 0 form.
y = 2x – 4
Write the following equation in ax + by + c = 0 form.
y = 4
Write the following equation in ax + by + c = 0 form.
`x/2 + y/4` = 1
Write the following equation in ax + by + c = 0 form.
`x/3 - y/2` = 0
If the line 3x + 4y = p makes a triangle of area 24 square unit with the co-ordinate axes then find the value of p.
Find the co-ordinates of the foot of the perpendicular drawn from the point A(–2, 3) to the line 3x – y – 1 = 0
Find the co-ordinates of the circumcenter of the triangle whose vertices are A(–2, 3), B(6, –1), C(4, 3).
Find the equation of the line whose X-intercept is 3 and which is perpendicular to the line 3x − y + 23 = 0.
Find the distance between parallel lines 9x + 6y − 7 = 0 and 3x + 2y + 6 = 0
Find points on the line x + y − 4 = 0 which are at one unit distance from the line 4x + 3y – 10 = 0.
Find the equation of the line passing through the point of intersection of lines x + y − 2 = 0 and 2x − 3y + 4 = 0 and making intercept 3 on the X-axis
If A(4, 3), B(0, 0), and C(2, 3) are the vertices of ∆ABC then find the equation of bisector of angle BAC.
D(−1, 8), E(4, −2), F(−5, −3) are midpoints of sides BC, CA and AB of ∆ABC Find equations of sides of ∆ABC
D(−1, 8), E(4, −2), F(−5, −3) are midpoints of sides BC, CA and AB of ∆ABC Find co-ordinates of the circumcenter of ΔABC
O(0, 0), A(6, 0) and B(0, 8) are vertices of a triangle. Find the co-ordinates of the incenter of ∆OAB
Select the correct option from the given alternatives:
If A(1, −2), B(−2, 3) and C(2, −5) are the vertices of ∆ABC, then the equation of the median BE is
Answer the following question:
Find the distance of the origin from the line x = – 2
Answer the following question:
Obtain the equation of the line which is parallel to the X−axis and 3 unit below it.
Answer the following question:
Obtain the equation of the line which is parallel to the Y−axis and 2 units to the left of it.
Answer the following question:
Obtain the equation of the line which is parallel to the X−axis and making an intercept of 5 on the Y−axis.
Answer the following question:
Obtain the equation of the line which is parallel to the Y−axis and making an intercept of 3 on the X−axis.
Answer the following question:
Find the equation of the line which passes through the point of intersection of lines x + y + 9 = 0, 2x + 3y + 1 = 0 and which makes X-intercept 1.
Answer the following question:
Find the distance of P(−1, 1) from the line 12(x + 6) = 5(y − 2)
A particle is moving in a straight line according to as S = 24t + 3t2 - t3, then the time it will come to rest is ______
For the lines 5x + 2y = 8 and 5x - 2y = 7, which of the following statement is true?
The y-intercept of the line passing through A( 6, 1) and perpendicular to the line x - 2y = 4 is ______.
The length of the perpendicular from the origin on the line `(xsinalpha)/"b" - (ycosalpha)/"a" - 1 = 0` is ______.
If the distance of the point (1, 1, 1) from the origin is half its distance from the plane x + y + z + k = 0, then k = ______.