हिंदी

If the line 3x + 4y = p makes a triangle of area 24 square unit with the co-ordinate axes then find the value of p . - Mathematics and Statistics

Advertisements
Advertisements

प्रश्न

If the line 3x + 4y = p makes a triangle of area 24 square unit with the co-ordinate axes then find the value of p.

योग

उत्तर


Let the line 3x + 4y = p cuts the X and Y axes at points A and B respectively.

3x + 4y = p

∴ `(3"x")/"p" + (4"y")/"p"` = 1

∴ `"x"/("p"/3) + "y"/("p"/4)` = 1

This equation is of the form `"x"/"a" + "y"/"b"` = 1,

where a = `"p"/3` and b = `"p"/4`

∴ A ≡ (a, 0) = `("p"/3, 0)` and B ≡ (0, b) = `(0, "p"/4)`

∴ OA = `"p"/3` and OB = `"p"/4`

Given, A(ΔOAB) = 24 sq. units

∴ `|1/2 xx "OA" xx "OB"|` = 24

∴ `|1/2 xx "p"/3 xx "p"/4|` = 24

∴ p2 = 576

∴ p = ± 24

shaalaa.com
General Form of Equation of a Line
  क्या इस प्रश्न या उत्तर में कोई त्रुटि है?
अध्याय 5: Straight Line - Exercise 5.4 [पृष्ठ १२२]

APPEARS IN

बालभारती Mathematics and Statistics 1 (Arts and Science) [English] 11 Standard Maharashtra State Board
अध्याय 5 Straight Line
Exercise 5.4 | Q 5 | पृष्ठ १२२

संबंधित प्रश्न

Find the slope, X-intercept, Y-intercept of the following line:

2x + 3y – 6 = 0


Find the slope, X-intercept, Y-intercept of the following line:

3x − y − 9 = 0


Find the slope, X-intercept, Y-intercept of the following line:

x + 2y = 0


Write the following equation in ax + by + c = 0 form.

y = 4


Write the following equation in ax + by + c = 0 form.

`x/2 + y/4` = 1


Find the co-ordinates of the orthocenter of the triangle whose vertices are A(3, –2), B(7, 6), C(–1, 2).


Show that lines 3x − 4y + 5 = 0, 7x − 8y + 5 = 0, and 4x + 5y − 45 = 0 are concurrent. Find their point of concurrence


Find the equation of the line whose X-intercept is 3 and which is perpendicular to the line 3x − y + 23 = 0.


Find the distance of the origin from the line 7x + 24y – 50 = 0


Find the distance of the point A(−2, 3) from the line 12x − 5y − 13 = 0 


Find the distance between parallel lines 4x − 3y + 5 = 0 and 4x − 3y + 7 = 0


Find points on the line x + y − 4 = 0 which are at one unit distance from the line 4x + 3y – 10 = 0.


Find the equation of the line parallel to the X-axis and passing through the point of intersection of lines x + y − 2 = 0 and 4x + 3y = 10


D(−1, 8), E(4, −2), F(−5, −3) are midpoints of sides BC, CA and AB of ∆ABC Find co-ordinates of the circumcenter of ΔABC


Select the correct option from the given alternatives:

Distance between the two parallel lines y = 2x + 7 and y = 2x + 5 is


Answer the following question:

Find the distance of the origin from the line x = – 2


Answer the following question:

Obtain the equation of the line which is parallel to the Y−axis and 2 units to the left of it.


Answer the following question:

Obtain the equation of the line which is parallel to the X−axis and making an intercept of 5 on the Y−axis.


Answer the following question:

Obtain the equation of the line which is parallel to the Y−axis and making an intercept of 3 on the X−axis.


Answer the following question:

Find the equation of the line which passes through the point of intersection of lines x + y − 3 = 0, 2x − y + 1 = 0 and which is parallel X-axis


Answer the following question:

Find the equation of the line which passes through the point of intersection of lines x + y + 9 = 0, 2x + 3y + 1 = 0 and which makes X-intercept 1.


Answer the following question:

Find the distance of P(−1, 1) from the line 12(x + 6) = 5(y − 2)


For the lines 5x + 2y = 8 and 5x - 2y = 7, which of the following statement is true?


The y-intercept of the line passing through A( 6, 1) and perpendicular to the line x - 2y = 4 is ______.


Let the straight line x = b divide the area enclosed by y = (1 - x)2, y = 0 and x = 0 into two parts R1(0 ≤ x ≤ b) and R2 (b ≤ x ≤ 1) such that `R_1 - R_2 = 1/4`. Then b equals ______ 


The equation 3x2 - 4xy + y2 = 0 represent a pair of straight lines whose slopes differ by ______.


The length of the perpendicular from the origin on the line `(xsinalpha)/"b" - (ycosalpha)/"a" - 1 = 0` is ______.


If the distance of the point (1, 1, 1) from the origin is half its distance from the plane x + y + z + k = 0, then k = ______.


Find the distance of the origin from the line 7x + 24y – 50 = 0 is:


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×