हिंदी

Find the equation of the line parallel to the X-axis and passing through the point of intersection of lines x + y − 2 = 0 and 4x + 3y = 10 - Mathematics and Statistics

Advertisements
Advertisements

प्रश्न

Find the equation of the line parallel to the X-axis and passing through the point of intersection of lines x + y − 2 = 0 and 4x + 3y = 10

योग

उत्तर

Since the required line passes through the point of intersection of x + y − 2 = 0 and 4x + 3y = 10, its equation is of the form.

(x + y − 2) + k(4x + 3y − 10) = 0    ...(1)

i.e., (1 + 4k)x + (1 + 3k)y + (−2 − 10k) = 0

Slope of this line = `(-(1 + 4"k"))/(1 + 3"k")`

Since it is parallel to X-axis, its slope = 0

∴ `(-(1 + 4"k"))/(1 + 3"k")` = 0

∴ 1 + 4k = 0

∴ k = `-1/4`

Substituting k = `-1/4` in (1), we get

`(x + y - 2) -1/4(4x + 3y - 10)` = 0

∴ 4x + 4y − 8 − 4x − 3y + 10 = 0

∴ y + 2 = 0

This is the equation of required line.

shaalaa.com
General Form of Equation of a Line
  क्या इस प्रश्न या उत्तर में कोई त्रुटि है?
अध्याय 5: Straight Line - Exercise 5.4 [पृष्ठ १२२]

APPEARS IN

बालभारती Mathematics and Statistics 1 (Arts and Science) [English] 11 Standard Maharashtra State Board
अध्याय 5 Straight Line
Exercise 5.4 | Q 16 | पृष्ठ १२२

संबंधित प्रश्न

Find the slope, X-intercept, Y-intercept of the following line:

2x + 3y – 6 = 0


Write the following equation in ax + by + c = 0 form.

`x/3 - y/2` = 0


Find the co-ordinates of the foot of the perpendicular drawn from the point A(–2, 3) to the line 3x – y – 1 = 0


Find the co-ordinates of the circumcenter of the triangle whose vertices are A(–2, 3), B(6, –1), C(4, 3).


Find the co-ordinates of the orthocenter of the triangle whose vertices are A(3, –2), B(7, 6), C(–1, 2).


Find the distance of the point A(−2, 3) from the line 12x − 5y − 13 = 0 


Find the distance between parallel lines 4x − 3y + 5 = 0 and 4x − 3y + 7 = 0


Find the equation of the line passing through the point of intersection of lines x + y − 2 = 0 and 2x − 3y + 4 = 0 and making intercept 3 on the X-axis


If A(4, 3), B(0, 0), and C(2, 3) are the vertices of ∆ABC then find the equation of bisector of angle BAC.


D(−1, 8), E(4, −2), F(−5, −3) are midpoints of sides BC, CA and AB of ∆ABC Find equations of sides of ∆ABC


D(−1, 8), E(4, −2), F(−5, −3) are midpoints of sides BC, CA and AB of ∆ABC Find co-ordinates of the circumcenter of ΔABC


O(0, 0), A(6, 0) and B(0, 8) are vertices of a triangle. Find the co-ordinates of the incenter of ∆OAB


Select the correct option from the given alternatives:

If A(1, −2), B(−2, 3) and C(2, −5) are the vertices of ∆ABC, then the equation of the median BE is


Select the correct option from the given alternatives:

Distance between the two parallel lines y = 2x + 7 and y = 2x + 5 is


Answer the following question:

Obtain the equation of the line which is parallel to the X−axis and making an intercept of 5 on the Y−axis.


Answer the following question:

Obtain the equation of the line which is parallel to the Y−axis and making an intercept of 3 on the X−axis.


Answer the following question:

Find the distance between the parallel lines 3x + 4y + 3 = 0 and 3x + 4y + 15 = 0


Answer the following question:

Find the equation of the line which passes through the point of intersection of lines x + y − 3 = 0, 2x − y + 1 = 0 and which is parallel X-axis


Answer the following question:

Find the equation of the line which passes through the point of intersection of lines x + y + 9 = 0, 2x + 3y + 1 = 0 and which makes X-intercept 1.


Answer the following question:

Find the distance of P(−1, 1) from the line 12(x + 6) = 5(y − 2)


Answer the following question:

Find the distance of the line 4x − y = 0 from the point P(4, 1) measured along the line making an angle of 135° with the positive X-axis


For the lines 5x + 2y = 8 and 5x - 2y = 7, which of the following statement is true?


The length of perpendicular from (1, 3) on line 3x + 4y + 10 = 0, is ______ 


Let the straight line x = b divide the area enclosed by y = (1 - x)2, y = 0 and x = 0 into two parts R1(0 ≤ x ≤ b) and R2 (b ≤ x ≤ 1) such that `R_1 - R_2 = 1/4`. Then b equals ______ 


The equation 12x2 + 7xy + ay2 + 13x - y + 3 = 0 represents a pair of perpendicular lines. Then the value of 'a' is ______  


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×