मराठी

A Wholesale Dealer Deals in Two Kinds, a and B (Say) of Mixture of Nuts. Each Kg of Mixture a Contains 60 Grams of Almonds, 30 Grams of Cashew Nuts and 30 Grams of Hazel Nuts. - Mathematics

Advertisements
Advertisements

प्रश्न

A wholesale dealer deals in two kinds, A and B (say) of mixture of nuts. Each kg of mixture A contains 60 grams of almonds, 30 grams of  cashew nuts and 30 grams of hazel nuts. Each kg of mixture B contains 30 grams of almonds, 60 grams of cashew nuts and 180 grams of hazel nuts. The remainder of both mixtures is per nuts. The dealer is contemplating to use mixtures A and B to make a bag which will contain at least 240 grams of almonds, 300 grams of cashew nuts and 540 grams of hazel nuts. Mixture A costs Rs 8 per kg. and mixture B costs Rs 12 per kg. Assuming that mixtures A and B are uniform, use graphical method to determine the number of kg. of each mixture which he should use to minimise the cost of the bag.

उत्तर

Let kg of kind A and y kg of kind B were used.
Quantity cannot be negative.
Therefore,

\[x, y \geq 0\]

The given information can be tabulated as follows:

Nut Almonds(grams) Cashewnuts(grams) Hazel nuts(grams)
A(x) 60 30 30
B(y) 30 60 180
Availability 240 300 540

Therefore, the constraints are

\[60x + 30y \geq 240\]
\[30x + 60y \geq 300\]
\[30x + 180y \geq 540\]

Mixture A costs Rs 8 per kg. and mixture B costs Rs 12 per kg.
Total cost  = Z = \[8x + 12y\]

which is to be minimised.
Thus, the mathematical formulat​ion of the given linear programmimg problem is 
Min Z =  \[8x + 12y\] subject to

\[2x + y \geq 8\]
\[ x + 2y \geq 10\]
\[ x + 6y \geq 18\]

\[x, y \geq 0\]

First, we will convert the given inequations into equations, we obtain the following equations:
2x y = 8, x +2y = 10, x +6y = 18, x = 0 and y = 0

Region represented by 2x y ≥ 8:
The line 2x y = 8 meets the coordinate axes at A1(4, 0) and B1(0, 8) respectively. By joining these points we obtain the line 2x y = 8.
Clearly (0,0) does not satisfies the inequation 2x y ≥ 8. So,the region in xy plane which does not contain the origin represents the solution set of the inequation 2x y ≥ 8.

Region represented by x +2y ≥ 10:
The line x +2y = 10 meets the coordinate axes at C1(10,0) and D1(0, 5) respectively. By joining these points we obtain the line
x +2y = 10. Clearly (0,0) does not satisfies the inequation x +2y ≥ 10. So,the region which does not contain the origin represents the solution set of the inequation x +2y ≥ 10.

Region represented by x +6y ≥ 18:
The line x +6y = 18 meets the coordinate axes at E1(18,0) and F1(0, 3) respectively. By joining these points we obtain the line x + 6y = 18.Clearly (0,0) does not satisfies the inequation x + 6y ≥ 18. So,the region which does not contain the origin represents the solution set of the inequation x +6y ≥ 18.

Region represented by x ≥ 0 and y ≥ 0:
Since, every point in the first quadrant satisfies these inequations. So, the first quadrant is the region represented by the inequations x ≥ 0, and ≥ 0.

The feasible region determined by the system of constraints 2x y ≥ 8, x + 2y ≥ 10,x + 6y ≥ 18, x ≥ 0, and y ≥ 0, are as follows.The corner points are B1(0, 8), G1(2, 4), H1(6, 2) and E1(18, 0). 
The values of Z at these corner points are as follows

Corner point Z= 8x + 12y
B1 96
G1 64
H1 72
E1 144

The minimum value of Z is 64 which is attained at G1

\[\left( 2, 4 \right)\] . 

Thus, the minimum cost is Rs 64 obtained when 2 units of kind A and 4 units of kind B nuts were used.

 

 

shaalaa.com
  या प्रश्नात किंवा उत्तरात काही त्रुटी आहे का?
पाठ 30: Linear programming - Exercise 30.3 [पृष्ठ ३९]

APPEARS IN

आरडी शर्मा Mathematics [English] Class 12
पाठ 30 Linear programming
Exercise 30.3 | Q 8 | पृष्ठ ३९

व्हिडिओ ट्यूटोरियलVIEW ALL [1]

संबंधित प्रश्‍न

Find graphically, the maximum value of z = 2x + 5y, subject to constraints given below :

2x + 4y  83

x + y  6

x + y  4

x  0, y 0


Maximise Z = x + 2y subject to the constraints

`x + 2y >= 100`

`2x - y <= 0`

`2x + y <= 200`

Solve the above LPP graphically


Solve the following L.P.P. graphically Maximise Z = 4x + y 

Subject to following constraints  x + y ≤ 50

3x + y ≤ 90,

x ≥ 10

x, y ≥ 0


Solve the following L.P.P graphically: Maximise Z = 20x + 10y

Subject to the following constraints x + 2y ≤ 28,

3x + y ≤ 24,

x ≥ 2,

 x, y ≥ 0


Solve the following LPP graphically :
Maximise Z = 105x + 90y
subject to the constraints
x + y ≤ 50
2x + y ≤ 80
x ≥ 0, y ≥ 0.


Maximize Z = 5x + 3y
Subject to

\[3x + 5y \leq 15\]
\[5x + 2y \leq 10\]
\[ x, y \geq 0\]


Maximize Z = 50x + 30y
Subject to 

\[2x + y \leq 18\]
\[3x + 2y \leq 34\]
\[ x, y \geq 0\]


Maximize Z = 15x + 10y
Subject to 

\[3x + 2y \leq 80\]
\[2x + 3y \leq 70\]
\[ x, y \geq 0\]

 


Minimize Z = 2x + 4y
Subject to 

\[x + y \geq 8\]
\[x + 4y \geq 12\]
\[x \geq 3, y \geq 2\]

 


A diet for a sick person must contain at least 4000 units of vitamins, 50 units of minerals and 1400 of calories. Two foods A and B, are available at a cost of Rs 4 and Rs 3 per unit respectively. If one unit of A contains 200 units of vitamin, 1 unit of mineral and 40 calories and one unit of food B contains 100 units of vitamin, 2 units of minerals and 40 calories, find what combination of foods should be used to have the least cost?


A diet is to contain at least 80 units of vitamin A and 100 units of minerals. Two foods F1and F2 are available. Food F1 costs Rs 4 per unit and F2 costs Rs 6 per unit one unit of food F1 contains 3 units of vitamin A and 4 units of minerals. One unit of food F2contains 6 units of vitamin A and 3 units of minerals. Formulate this as a linear programming problem and find graphically the minimum cost for diet that consists of mixture of these foods and also meets the mineral nutritional requirements


Two tailors, A and B earn Rs 15 and Rs 20 per day respectively. A can stitch 6 shirts and 4 pants  while B can stitch 10 shirts and 4 pants per day. How many days shall each work if it is desired to produce (at least) 60 shirts and 32 pants at a minimum labour cost?


A small manufacturer has employed 5 skilled men and 10 semi-skilled men and makes an article in two qualities deluxe model and an ordinary model. The making of a deluxe model requires 2 hrs. work by a skilled man and 2 hrs. work by a semi-skilled man. The ordinary model requires 1 hr by a skilled man and 3 hrs. by a semi-skilled man. By union rules no man may work more than 8 hrs per day. The manufacturers clear profit on deluxe model is Rs 15 and on an ordinary model is Rs 10. How many of each type should be made in order to maximize his total daily profit.


A furniture manufacturing company plans to make two products : chairs and tables. From its available resources which consists of 400 square feet to teak wood and 450 man hours. It is known that to make a chair requires 5 square feet of wood and 10 man-hours and yields a profit of Rs 45, while each table uses 20 square feet of wood and 25 man-hours and yields a profit of Rs 80. How many items of each product should be produced by the company so that the profit is maximum?


A chemical company produces two compounds, A and B. The following table gives the units of ingredients, C and D per kg of compounds A and B as well as minimum requirements of C and D and costs per kg of A and B. Find the quantities of A and B which would give a supply of C and D at a minimum cost.

  Compound Minimum requirement
A B  
Ingredient C
Ingredient D
1
3
2
1
80
75
Cost (in Rs) per kg 4 6 -

A company manufactures two types of novelty Souvenirs made of plywood. Souvenirs of type A require 5 minutes each for cutting and 10 minutes each for assembling. Souvenirs of type B require 8 minutes each for cutting and 8 minutes each for assembling. There are 3 hours 20 minutes available for cutting and 4 hours available for assembling. The profit is 50 paise each for type A and 60 paise each for type B souvenirs. How many souvenirs of each type should the company manufacture in order to maximize the profit?


A producer has 30 and 17 units of labour and capital respectively which he can use to produce two type of goods x and y. To produce one unit of x, 2 units of labour and 3 units of capital are required. Similarly, 3 units of labour and 1 unit of capital is required to produce one unit of y. If x and y are priced at Rs 100 and Rs 120 per unit respectively, how should be producer use his resources to maximize the total revenue? Solve the problem graphically.


A firm manufactures two types of products A and B and sells them at a profit of Rs 5 per unit of type A and Rs 3 per unit of type B. Each product is processed on two machines M1 and M2. One unit of type A requires one minute of processing time on M1 and two minutes of processing time on M2, whereas one unit of type B requires one minute of processing time on M1 and one minute on M2. Machines M1 and M2 are respectively available for at most 5 hours and 6 hours in a day. Find out how many units of each type of product should the firm produce a day in order to maximize the profit. Solve the problem graphically. 


A manufacturer makes two products, A and B. Product A sells at Rs 200 each and takes 1/2 hour to make. Product B sells at Rs 300 each and takes 1 hour to make. There is a permanent order for 14 units of product A and 16 units of product B. A working week consists of 40 hours of production and the weekly turn over must not be less than Rs 10000. If the profit on each of product A is Rs 20 and an product B is Rs 30, then how many of each should be produced so that the profit is maximum? Also find the maximum profit.

 


A cooperative society of farmers has 50 hectares of land to grow two crops X and Y. The profits from crops X and Y per hectare are estimated as ₹10,500 and ₹9,000 respectively. To control weeds, a liquid herbicide has to be used for crops X and Y at the rate of 20 litres and 10 litres per hectare, respectively. Further not more than 800 litres of herbicide should be used in order to protect fish and wildlife using a pond which collects drainage from this land. How much land should be allocated to each crop so as to maximise the total profit of the society? 


A manufacturer has three machine I, II, III installed in his factory. Machines I and II are capable of being operated for at most 12 hours whereas machine III must be operated for atleast 5 hours a day. She produces only two items M and N each requiring the use of all the three machines.
The number of hours required for producing 1 unit each of M and N on the three machines are given in the following table:
 

Items Number of hours required on machines
  I II III
M 1 2 1
N 2 1 1.25


She makes a profit of ₹600 and ₹400 on items M and N respectively. How many of each item should she produce so as to maximise her profit assuming that she can sell all the items that she produced? What will be the maximum profit?


A manufacturer makes two types of toys A and B. Three machines are needed for this purpose and the time (in minutes) required for each toy on the machines is given below:
 

Types of Toys Machines
  I II III
A 12 18 6
B 6 0 9
 
Each machine is available for a maximum of 6 hours per day. If the profit on each toy of type A is ₹7.50 and that on each toy of type B is ₹5, show that 15 toys of type A and 30 toys of type B should be manufactured in a day to get maximum profit.

A manufacturer considers that men and women workers are equally efficient and so he pays them at the same rate. He has 30 and 17 units of workers (male and female) and capital respectively, which he uses to produce two types of goods A and B. To produce one unit of A, 2 workers and 3 units of capital are required while 3 workers and 1 unit of capital is required to produce one unit of B. If A and B are priced at ₹100 and ₹120 per unit respectively, how should he use his resources to maximise the total revenue? Form the above as an LPP and solve graphically. Do you agree with this view of the manufacturer that men and women workers are equally efficient and so should be paid at the same rate?


A manufacturer produces two products and B. Both the products are processed on two different machines. The available capacity of first machine is 12 hours and that of second machine is 9 hours per day. Each unit of product A requires 3 hours on both machines and each unit of product B requires 2 hours on first machine and 1 hour on second machine. Each unit of product A is sold at ₹7 profit and that of at a profit of ₹4. Find the production level per day for maximum profit graphically.


 There are two types of fertilisers 'A' and 'B' . 'A' consists of 12% nitrogen and 5% phosphoric acid whereas 'B' consists of 4% nitrogen and 5% phosphoric acid. After testing the soil conditions, farmer finds that he needs at least 12 kg of nitrogen and 12 kg of phosphoric acid for his crops. If 'A' costs ₹10 per kg and 'B' cost ₹8 per kg, then graphically determine how much of each type of fertiliser should be used so that nutrient requiremnets are met at a minimum cost


Find the solution set of inequalities 0 ≤ x ≤ 5, 0 ≤ 2y ≤ 7


For the function z = 19x + 9y to be maximum under the constraints 2x + 3y ≤ 134, x + 5y ≤ 200, x ≥ 0, y ≥ 0; the values of x and y are ______.


A set of values of decision variables which satisfies the linear constraints and nn-negativity conditions of an L.P.P. is called its ____________.


Let R be the feasible region for a linear programming problem, and let Z = ax + by be the objective function. If R is bounded, then the objective function Z has both a maximum and a minimum value on R and ____________.


In the Corner point method for solving a linear programming problem the second step after finding the feasible region of the linear programming problem and determining its corner points is ____________.


The corner points of the bounded feasible region of a LPP are A(0,50), B(20, 40), C(50, 100) and D(0, 200) and the objective function is Z = x + 2y. Then the maximum value is ____________.


Any point in the feasible region that gives the optional value (maximum or minimum) of the objective function is called:-


Solve the following linear programming problem graphically:

Minimize: Z = 5x + 10y

Subject to constraints:

x + 2y ≤ 120, x + y ≥ 60, x – 2y ≥ 0, x ≥ 0, y ≥ 0.


Solve the following linear programming problem graphically:

Maximize: Z = x + 2y

Subject to constraints:

x + 2y ≥ 100,

2x – y ≤ 0

2x + y ≤ 200,

x ≥ 0, y ≥ 0.


Solve the following Linear Programming Problem graphically:

Minimize: z = x + 2y,

Subject to the constraints: x + 2y ≥ 100, 2x – y ≤ 0, 2x + y ≤ 200, x, y ≥ 0.


Solve the following Linear Programming Problem graphically:

Maximize: z = – x + 2y,

Subject to the constraints: x ≥ 3, x + y ≥ 5, x + 2y ≥ 6, y ≥ 0.


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×