मराठी
कर्नाटक बोर्ड पी.यू.सी.पीयूसी विज्ञान इयत्ता ११

Electric Potential Decreases Uniformly from 120 V to 80 V, as One Moves on the X-axis from X = −1 Cm to X = +1 Cm. the Electric Field at the Origin - Physics

Advertisements
Advertisements

प्रश्न

Electric potential decreases uniformly from 120 V to 80 V, as one moves on the x-axis from x = −1 cm to x = +1 cm. The electric field at the origin 

(a) must be equal to 20 Vcm−1
(b) may be equal to 20 Vcm−1
(c) may be greater than 20 Vcm−1
(d) may be less than 20 Vcm−1 

टीपा लिहा

उत्तर

(b) may be equal to 20 Vcm−1
(c) may be greater than 20 Vcm−1

Change in the electric potential, dV = 40 V
Change in length, \[∆ r\] = −1−1 = −2 cm 

Electric field, \[E = \frac{- dV}{dr}\] 

\[\Rightarrow E =  - \frac{40  V}{- 2}\] 

\[ \Rightarrow E = 20   {Vcm}^{- 1}\]

This is the value of the electric field along the x axis.
Electric field is maximum along the direction in which the potential decreases at the maximum rate. But here, direction in which the potential decreases at the maximum rate may or may not be along the x-axis. From the given information,the direction of maximum decrease in potential cannot be found out accurately. So, E can be greater than 20 V/cm in the direction of maximum decrease in potential.
So, the electric field at the origin may be equal to or greater than 20 Vcm−1.  

shaalaa.com
Electric Field - Electric Field Due to a System of Charges
  या प्रश्नात किंवा उत्तरात काही त्रुटी आहे का?
पाठ 7: Electric Field and Potential - MCQ [पृष्ठ १२०]

APPEARS IN

एचसी वर्मा Concepts of Physics Vol. 2 [English] Class 11 and 12
पाठ 7 Electric Field and Potential
MCQ | Q 4 | पृष्ठ १२०

संबंधित प्रश्‍न

The charge on a proton is +1.6 × 10−19 C and that on an electron is −1.6 × 10−19 C. Does it mean that the electron has 3.2 × 10−19 C less charge than the proton? 


Can a gravitational field be added vectorially to an electric field to get a total field?


Why does a phonograph record attract dust particles just after it is cleaned?


In some old texts it is mentioned that 4π lines of force originate from each unit positive charge. Comment on the statement in view of the fact that 4π is not an integer. 


The electric field at the origin is along the positive x-axis. A small circle is drawn with the centre at the origin, cutting the axes at points A, B, C and D with coordinates (a, 0), (0, a), (−a, 0), (0, −a), respectively. Out of the points on the periphery of the circle, the potential is minimum at  


If a body is charged by rubbing it, its weight


A point charge q is rotated along a circle in an electric field generated by another point charge Q. The work done by the electric field on the rotating charge in one complete revolution is 


Which of the following quantities does not depend on the choice of zero potential or zero potential energy?


The electric field in a region is directed outward and is proportional to the distance rfrom the origin. Taking the electric potential at the origin to be zero, 


A ball of mass 100 g and with a charge of 4.9 × 10−5 C is released from rest in a region where a horizontal electric field of 2.0 × 104 N C−1 exists. (a) Find the resultant force acting on the ball. (b) What will be the path of the ball? (c) Where will the ball be at the end of 2 s?


Consider the situation of the previous problem. A charge of −2.0 × 10−4 C is moved from point A to point B. Find the change in electrical potential energy UB − UA for the cases (a), (b) and (c). 


The kinetic energy of a charged particle decreases by 10 J as it moves from a point at potential 100 V to a point at potential 200 V. Find the charge on the particle.  


Which of the following methods can be used to charge a metal sphere positively without touching it? Select the most appropriate.


The unit of electric field is not equivalent to ______.

A charged particle is free to move in an electric field. It will travel ______.

When 1014 electrons are removed from a neutral metal sphere, the charge on the sphere becomes ______.


The electric field intensity produced by the radiations coming from 100 W bulb at 3 m distance is E. The electric field intensity produced by the radiations coming from 50 W bulb at the same distance is:


Five charges, q each are placed at the corners of a regular pentagon of side ‘a’ (Figure).

(a) (i) What will be the electric field at O, the centre of the pentagon?

(ii) What will be the electric field at O if the charge from one of the corners (say A) is removed?

(iii) What will be the electric field at O if the charge q at A is replaced by –q?

(b) How would your answer to (a) be affected if pentagon is replaced by n-sided regular polygon with charge q at each of its corners?


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×