मराठी
कर्नाटक बोर्ड पी.यू.सी.पीयूसी विज्ञान इयत्ता ११

A Ball of Mass 100 G and with a Charge of 4.9 × 10−5 C is Released from Rest in a Region Where a Horizontal Electric Field of 2.0 × 104 N C−1 Exists. - Physics

Advertisements
Advertisements

प्रश्न

A ball of mass 100 g and with a charge of 4.9 × 10−5 C is released from rest in a region where a horizontal electric field of 2.0 × 104 N C−1 exists. (a) Find the resultant force acting on the ball. (b) What will be the path of the ball? (c) Where will the ball be at the end of 2 s?

टीपा लिहा

उत्तर

Given:
Charge of the ball, q = 4.9 × 10−5 C
Electrical field intensity, E = 2 × 104 N/C
Mass of the ball, m = 100 gm
Force of gravity, Fg = mg 
Electrical force, Fe = Eq
The particle moves due to the resultant force of Fg and Fe.  

\[R^2  =  {F_g}^2  +  {F_e}^2 \] 

\[       = (0 . 1 \times 9 . 8 )^2  + (4 . 9 \times  {10}^{- 5}  \times 2 \times  {10}^4  )^2 \] 

\[       = 0 . 9604 + 96 . 04 \times  {10}^{- 2} \] 

\[       = 1 . 9208  N\] 

\[ \Rightarrow R = 1 . 3859  N\] 


 Fg = Fe
⇒ tanθ = 1
⇒ θ = 45°
θ is the angle made by the horizontal with the resultant.
Hence, the path of the ball is straight and is along the resultant force at an angle of 45° with the horizontal
Vertical displacement in t = 2 s,

\[y = \frac{1}{2}g t^2 \] 

\[ \Rightarrow y = \frac{1}{2} \times 9 . 8 \times 2 \times 2 = 19 . 6  \] m


Both the forces are same.
So, vertical displacement in 2 s = Horizontal displacement in 2 s
Net displacement

\[= \sqrt{\left( 19 . 6 \right)^2 + \left( 19 . 6 \right)^2} = \sqrt{768 . 932} = 27 . 7  \] m

shaalaa.com
Electric Field - Electric Field Due to a System of Charges
  या प्रश्नात किंवा उत्तरात काही त्रुटी आहे का?
पाठ 7: Electric Field and Potential - Exercises [पृष्ठ १२३]

APPEARS IN

एचसी वर्मा Concepts of Physics Vol. 2 [English] Class 11 and 12
पाठ 7 Electric Field and Potential
Exercises | Q 49 | पृष्ठ १२३

संबंधित प्रश्‍न

The charge on a proton is +1.6 × 10−19 C and that on an electron is −1.6 × 10−19 C. Does it mean that the electron has 3.2 × 10−19 C less charge than the proton? 


In some old texts it is mentioned that 4π lines of force originate from each unit positive charge. Comment on the statement in view of the fact that 4π is not an integer. 


The electric field and the electric potential at a point are E and V, respectively.  


Electric potential decreases uniformly from 120 V to 80 V, as one moves on the x-axis from x = −1 cm to x = +1 cm. The electric field at the origin 

(a) must be equal to 20 Vcm−1
(b) may be equal to 20 Vcm−1
(c) may be greater than 20 Vcm−1
(d) may be less than 20 Vcm−1 


Which of the following quantities does not depend on the choice of zero potential or zero potential energy?


A particle of mass 1 g and charge 2.5 × 10−4 C is released from rest in an electric field of 1.2 × 10 4 N C−1.   How long will it take for the particle to travel a distance of 40 cm?


A particle of mass 1 g and charge 2.5 × 10−4 C is released from rest in an electric field of 1.2 × 10 4 N C−1. What will be the speed of the particle after travelling this distance? 


A particle of mass 1 g and charge 2.5 × 10−4 C is released from rest in an electric field of 1.2 × 10 4 N C−1. How much is the work done by the electric force on the particle during this period?


An electric field  \[\vec{E}  = ( \vec{i} 20 +  \vec{j} 30)   {NC}^{- 1}\]  exists in space. If the potential at the origin is taken to be zero, find the potential at (2 m, 2 m).

 

Which of the following methods can be used to charge a metal sphere positively without touching it? Select the most appropriate.


The surface charge density of a thin charged disc of radius R is σ. The value of the electric field at the center of the disc is `sigma/(2∈_0)`. With respect to the field at the center, the electric field along the axis at a distance R from the center of the disc ______.


The unit of electric field is not equivalent to ______.

A charged particle is free to move in an electric field. It will travel ______.

Electric lines of force about a negative point charge are ______.

Two identical blocks are kept on a frictionless horizontal table connected by a spring of stiffness k and of original length l0. A total charge Q is distributed on the block such that maximum elongation of spring at equilibrium is equal to x. Value of Q is ______.


When 1014 electrons are removed from a neutral metal sphere, the charge on the sphere becomes ______.


Two similar spheres having +Q and -Q charges are kept at a certain distance. F force acts between the two. If at the middle of two spheres, another similar sphere having +Q charge is kept, then it experiences a force in magnitude and direction as ______.


Five charges, q each are placed at the corners of a regular pentagon of side ‘a’ (Figure).

(a) (i) What will be the electric field at O, the centre of the pentagon?

(ii) What will be the electric field at O if the charge from one of the corners (say A) is removed?

(iii) What will be the electric field at O if the charge q at A is replaced by –q?

(b) How would your answer to (a) be affected if pentagon is replaced by n-sided regular polygon with charge q at each of its corners?


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×