Advertisements
Advertisements
प्रश्न
Find the sum to n terms of the series 52 + 62 + 72 + ... + 202
उत्तर
The given series is 52 + 62 + 72 + … + 202
nth term, an = ( n + 4)2 = n2 + 8n + 16
APPEARS IN
संबंधित प्रश्न
Find the sum to n terms of the series 1 × 2 + 2 × 3 + 3 × 4 + 4 × 5 + …
Find the sum to n terms of the series `1/(1xx2) + 1/(2xx3)+1/(3xx4)+ ...`
Find the sum to n terms of the series 12 + (12 + 22) + (12 + 22 + 32) + …
Find the sum to n terms of the series whose nth term is given by n (n + 1) (n + 4).
Find the sum to n terms of the series whose nth terms is given by n2 + 2n
Find the sum to n terms of the series whose nth terms is given by (2n – 1)2
Show that `(1xx2^2 + 2xx3^2 + ...+nxx(n+1)^2)/(1^2 xx 2 + 2^2 xx3 + ... + n^2xx (n+1))` = `(3n + 5)/(3n + 1)`
1.2.4 + 2.3.7 +3.4.10 + ...
1 + (1 + 2) + (1 + 2 + 3) + (1 + 2 + 3 + 4) + ...
1 × 2 + 2 × 3 + 3 × 4 + 4 × 5 + ...
Find the sum of the series whose nth term is:
2n3 + 3n2 − 1
Find the sum of the series whose nth term is:
n3 − 3n
Find the sum of the series whose nth term is:
(2n − 1)2
Find the 20th term and the sum of 20 terms of the series 2 × 4 + 4 × 6 + 6 × 8 + ...
Write the sum of the series 2 + 4 + 6 + 8 + ... + 2n.
1 + 3 + 6 + 10 + 15 + ...
1 + 4 + 13 + 40 + 121 + ...
2 + 4 + 7 + 11 + 16 + ...
\[\frac{1}{1 . 4} + \frac{1}{4 . 7} + \frac{1}{7 . 10} + . . .\]
\[\frac{1}{1 . 6} + \frac{1}{6 . 11} + \frac{1}{11 . 14} + \frac{1}{14 . 19} + . . . + \frac{1}{(5n - 4) (5n + 1)}\]
If ∑ n = 210, then ∑ n2 =
If Sn = \[\sum^n_{r = 1} \frac{1 + 2 + 2^2 + . . . \text { Sum to r terms }}{2^r}\], then Sn is equal to
Write the sum of 20 terms of the series \[1 + \frac{1}{2}(1 + 2) + \frac{1}{3}(1 + 2 + 3) + . . . .\]
If \[1 + \frac{1 + 2}{2} + \frac{1 + 2 + 3}{3} + . . . .\] to n terms is S, then S is equal to
Sum of n terms of the series \[\sqrt{2} + \sqrt{8} + \sqrt{18} + \sqrt{32} +\] ....... is
The sum of 10 terms of the series \[\sqrt{2} + \sqrt{6} + \sqrt{18} +\] .... is
Write the sum to n terms of a series whose rth term is r + 2r.
Find the natural number a for which ` sum_(k = 1)^n f(a + k)` = 16(2n – 1), where the function f satisfies f(x + y) = f(x) . f(y) for all natural numbers x, y and further f(1) = 2.
Let Sn denote the sum of the cubes of the first n natural numbers and sn denote the sum of the first n natural numbers. Then `sum_(r = 1)^n S_r/s_r` equals ______.
The sum of the series `1/(x + 1) + 2/(x^2 + 1) + 2^2/(x^4 + 1) + ...... + 2^100/(x^(2^100) + 1)` when x = 2 is ______.
If |x| < 1, |y| < 1 and x ≠ y, then the sum to infinity of the following series:
(x + y) + (x2 + xy + y2) + (x3 + x2y + xy2 + y3) + .... is ______.
A GP consists of an even number of terms. If the sum of all the terms is 5 times the sum of the terms occupying odd places, the common ratio will be equal to ______.
The sum `sum_(k = 1)^20k 1/2^k` is equal to ______.