मराठी

1 + 3 + 6 + 10 + 15 + ... - Mathematics

Advertisements
Advertisements

प्रश्न

1 + 3 + 6 + 10 + 15 + ...

उत्तर

Let \[T_n\] be the nth term and \[S_n\] be the sum of n terms of the given series.
Thus, we have: 

\[S_n = 1 + 3 + 6 + 10 + 15 + . . . + T_{n - 1} + T_n\]  ....(1)

Equation (1) can be rewritten as:

\[S_n = 1 + 3 + 6 + 10 + 15 + . . . + T_{n - 1} + T_n\]  ...(2)
On subtracting (2) from (1), we get:

\[S_n = 1 + 3 + 6 + 10 + 15 + . . . + T_{n - 1} + T_n \]

\[ S_n = 1 + 3 + 6 + 10 + 15 + . . . + T_{n - 1} + T_n \]

_____________________________________________________

\[ 0 = 1 + \left[ 2 + 3 + 4 + 5 + . . . + \left( T_n - T_{n - 1} \right) \right] - T_n\]

The sequence of difference of successive terms is 2, 3, 4, 5,...
We observe that it is an AP with common difference 1 and first term 2.
Thus, we have:

\[1 + \left[ \frac{\left( n - 1 \right)}{2}\left( 4 + \left( n - 2 \right)1 \right) \right] - T_n = 0\]

\[ \Rightarrow 1 + \left[ \frac{\left( n - 1 \right)}{2}\left( n + 2 \right) \right] - T_n = 0\]

\[ \Rightarrow \left[ \frac{n^2 + n}{2} \right] = T_n\]

Now,

\[\because S_n = \sum^n_{k = 1} T_k \]

\[ \therefore S_n = \sum^n_{k = 1} \left( \frac{k^2 + k}{2} \right) \]

\[ \Rightarrow S_n = \frac{1}{2} \sum^n_{k = 1} k^2 + \frac{1}{2} \sum^n_{k = 1} k\]

\[ \Rightarrow S_n = \frac{n\left( n + 1 \right)\left( 2n + 1 \right)}{12} + \frac{n\left( n + 1 \right)}{4}\]

\[ \Rightarrow S_n = \frac{n\left( n + 1 \right)}{4}\left( \frac{2n + 1}{3} + 1 \right)\]

\[ \Rightarrow S_n = \frac{n\left( n + 1 \right)}{4}\left( \frac{2n + 4}{3} \right)\]

\[ \Rightarrow S_n = \frac{n\left( n + 1 \right)}{2}\left( \frac{n + 2}{3} \right)\]

\[ \Rightarrow S_n = \frac{n\left( n + 1 \right)\left( n + 2 \right)}{6}\]

shaalaa.com
  या प्रश्नात किंवा उत्तरात काही त्रुटी आहे का?
पाठ 21: Some special series - Exercise 21.2 [पृष्ठ १८]

APPEARS IN

आरडी शर्मा Mathematics [English] Class 11
पाठ 21 Some special series
Exercise 21.2 | Q 5 | पृष्ठ १८

व्हिडिओ ट्यूटोरियलVIEW ALL [1]

संबंधित प्रश्‍न

Find the sum to n terms of the series `1/(1xx2) + 1/(2xx3)+1/(3xx4)+ ...`


Find the sum to n terms of the series  52 + 62 + 72 + ... + 202


Find the sum to n terms of the series whose nth term is given by n (n + 1) (n + 4).


Find the sum to n terms of the series whose nth terms is given by n2 + 2n


Find the sum to n terms of the series whose nth terms is given by (2n – 1)2


22 + 42 + 62 + 82 + ...


1.2.4 + 2.3.7 +3.4.10 + ...


1 + (1 + 2) + (1 + 2 + 3) + (1 + 2 + 3 + 4) + ...


Find the sum of the series whose nth term is:

 2n3 + 3n2 − 1


Find the sum of the series whose nth term is:

n3 − 3n


Find the sum of the series whose nth term is:

n (n + 1) (n + 4)


Find the sum of the series whose nth term is:

(2n − 1)2


Write the sum of the series 2 + 4 + 6 + 8 + ... + 2n.


1 + 3 + 7 + 13 + 21 + ...


3 + 7 + 14 + 24 + 37 + ...


2 + 4 + 7 + 11 + 16 + ...


\[\frac{1}{1 . 4} + \frac{1}{4 . 7} + \frac{1}{7 . 10} + . . .\]


\[\frac{1}{1 . 6} + \frac{1}{6 . 11} + \frac{1}{11 . 14} + \frac{1}{14 . 19} + . . . + \frac{1}{(5n - 4) (5n + 1)}\]


The value of  \[\sum^n_{r = 1} \left\{ (2r - 1) a + \frac{1}{b^r} \right\}\] is equal to


If Sn = \[\sum^n_{r = 1} \frac{1 + 2 + 2^2 + . . . \text { Sum to r terms }}{2^r}\], then Sn is equal to


Write the sum of 20 terms of the series \[1 + \frac{1}{2}(1 + 2) + \frac{1}{3}(1 + 2 + 3) + . . . .\]


Write the 50th term of the series 2 + 3 + 6 + 11 + 18 + ...


Let Sn denote the sum of the cubes of first n natural numbers and sn denote the sum of first n natural numbers. Then, write the value of \[\sum^n_{r = 1} \frac{S_r}{s_r}\] .


The sum to n terms of the series \[\frac{1}{\sqrt{1} + \sqrt{3}} + \frac{1}{\sqrt{3} + \sqrt{5}} + \frac{1}{\sqrt{5} + \sqrt{7}} + . . . . + . . . .\]  is


The sum of the series \[\frac{2}{3} + \frac{8}{9} + \frac{26}{27} + \frac{80}{81} +\] to n terms is


Write the sum to n terms of a series whose rth term is r + 2r.

 

If \[\sum^n_{r = 1} r = 55, \text{ find }  \sum^n_{r = 1} r^3\] .

 


If the sum of first n even natural numbers is equal to k times the sum of first n odd natural numbers, then write the value of k.


3 + 5 + 9 + 15 + 23 + ...

 

Find the sum of the series (33 – 23) + (53 – 43) + (73 – 63) + … to n terms


Find the sum of the series (33 – 23) + (53 – 43) + (73 – 63) + ... to 10 terms


The sum of the series `1/(x + 1) + 2/(x^2 + 1) + 2^2/(x^4 + 1) + ...... + 2^100/(x^(2^100) + 1)` when x = 2 is ______.


The sum `sum_(k = 1)^20k 1/2^k` is equal to ______.


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×