Advertisements
Advertisements
प्रश्न
1 + 3 + 6 + 10 + 15 + ...
उत्तर
Let \[T_n\] be the nth term and \[S_n\] be the sum of n terms of the given series.
Thus, we have:
\[S_n = 1 + 3 + 6 + 10 + 15 + . . . + T_{n - 1} + T_n\] ....(1)
Equation (1) can be rewritten as:
\[S_n = 1 + 3 + 6 + 10 + 15 + . . . + T_{n - 1} + T_n \]
\[ S_n = 1 + 3 + 6 + 10 + 15 + . . . + T_{n - 1} + T_n \]
_____________________________________________________
\[ 0 = 1 + \left[ 2 + 3 + 4 + 5 + . . . + \left( T_n - T_{n - 1} \right) \right] - T_n\]
The sequence of difference of successive terms is 2, 3, 4, 5,...
We observe that it is an AP with common difference 1 and first term 2.
Thus, we have:
\[1 + \left[ \frac{\left( n - 1 \right)}{2}\left( 4 + \left( n - 2 \right)1 \right) \right] - T_n = 0\]
\[ \Rightarrow 1 + \left[ \frac{\left( n - 1 \right)}{2}\left( n + 2 \right) \right] - T_n = 0\]
\[ \Rightarrow \left[ \frac{n^2 + n}{2} \right] = T_n\]
Now,
\[\because S_n = \sum^n_{k = 1} T_k \]
\[ \therefore S_n = \sum^n_{k = 1} \left( \frac{k^2 + k}{2} \right) \]
\[ \Rightarrow S_n = \frac{1}{2} \sum^n_{k = 1} k^2 + \frac{1}{2} \sum^n_{k = 1} k\]
\[ \Rightarrow S_n = \frac{n\left( n + 1 \right)\left( 2n + 1 \right)}{12} + \frac{n\left( n + 1 \right)}{4}\]
\[ \Rightarrow S_n = \frac{n\left( n + 1 \right)}{4}\left( \frac{2n + 1}{3} + 1 \right)\]
\[ \Rightarrow S_n = \frac{n\left( n + 1 \right)}{4}\left( \frac{2n + 4}{3} \right)\]
\[ \Rightarrow S_n = \frac{n\left( n + 1 \right)}{2}\left( \frac{n + 2}{3} \right)\]
\[ \Rightarrow S_n = \frac{n\left( n + 1 \right)\left( n + 2 \right)}{6}\]
APPEARS IN
संबंधित प्रश्न
Find the sum to n terms of the series `1/(1xx2) + 1/(2xx3)+1/(3xx4)+ ...`
Find the sum to n terms of the series 52 + 62 + 72 + ... + 202
Find the sum to n terms of the series whose nth term is given by n (n + 1) (n + 4).
Find the sum to n terms of the series whose nth terms is given by n2 + 2n
Find the sum to n terms of the series whose nth terms is given by (2n – 1)2
22 + 42 + 62 + 82 + ...
1.2.4 + 2.3.7 +3.4.10 + ...
1 + (1 + 2) + (1 + 2 + 3) + (1 + 2 + 3 + 4) + ...
Find the sum of the series whose nth term is:
2n3 + 3n2 − 1
Find the sum of the series whose nth term is:
n3 − 3n
Find the sum of the series whose nth term is:
n (n + 1) (n + 4)
Find the sum of the series whose nth term is:
(2n − 1)2
Write the sum of the series 2 + 4 + 6 + 8 + ... + 2n.
1 + 3 + 7 + 13 + 21 + ...
3 + 7 + 14 + 24 + 37 + ...
2 + 4 + 7 + 11 + 16 + ...
\[\frac{1}{1 . 4} + \frac{1}{4 . 7} + \frac{1}{7 . 10} + . . .\]
\[\frac{1}{1 . 6} + \frac{1}{6 . 11} + \frac{1}{11 . 14} + \frac{1}{14 . 19} + . . . + \frac{1}{(5n - 4) (5n + 1)}\]
The value of \[\sum^n_{r = 1} \left\{ (2r - 1) a + \frac{1}{b^r} \right\}\] is equal to
If Sn = \[\sum^n_{r = 1} \frac{1 + 2 + 2^2 + . . . \text { Sum to r terms }}{2^r}\], then Sn is equal to
Write the sum of 20 terms of the series \[1 + \frac{1}{2}(1 + 2) + \frac{1}{3}(1 + 2 + 3) + . . . .\]
Write the 50th term of the series 2 + 3 + 6 + 11 + 18 + ...
Let Sn denote the sum of the cubes of first n natural numbers and sn denote the sum of first n natural numbers. Then, write the value of \[\sum^n_{r = 1} \frac{S_r}{s_r}\] .
The sum to n terms of the series \[\frac{1}{\sqrt{1} + \sqrt{3}} + \frac{1}{\sqrt{3} + \sqrt{5}} + \frac{1}{\sqrt{5} + \sqrt{7}} + . . . . + . . . .\] is
The sum of the series \[\frac{2}{3} + \frac{8}{9} + \frac{26}{27} + \frac{80}{81} +\] to n terms is
Write the sum to n terms of a series whose rth term is r + 2r.
If \[\sum^n_{r = 1} r = 55, \text{ find } \sum^n_{r = 1} r^3\] .
If the sum of first n even natural numbers is equal to k times the sum of first n odd natural numbers, then write the value of k.
3 + 5 + 9 + 15 + 23 + ...
Find the sum of the series (33 – 23) + (53 – 43) + (73 – 63) + … to n terms
Find the sum of the series (33 – 23) + (53 – 43) + (73 – 63) + ... to 10 terms
The sum of the series `1/(x + 1) + 2/(x^2 + 1) + 2^2/(x^4 + 1) + ...... + 2^100/(x^(2^100) + 1)` when x = 2 is ______.
The sum `sum_(k = 1)^20k 1/2^k` is equal to ______.