मराठी

Let Sn Denote the Sum of the Cubes of First N Natural Numbers and Sn Denote the Sum of First N Natural Numbers. Then, Write the Value of - Mathematics

Advertisements
Advertisements

प्रश्न

Let Sn denote the sum of the cubes of first n natural numbers and sn denote the sum of first n natural numbers. Then, write the value of \[\sum^n_{r = 1} \frac{S_r}{s_r}\] .

उत्तर

\[\text { We know that } , S_r = 1^3 + 2^3 + 3^3 + . . . + r^3 = \left[ \frac{r\left( r + 1 \right)}{2} \right]^2 \]

\[\text { And }, s_r = 1 + 2 + 3 + . . . + r = \frac{r\left( r + 1 \right)}{2}\]

\[As, \frac{S_r}{s_r} = \frac{\left[ \frac{r\left( r + 1 \right)}{2} \right]^2}{\left[ \frac{r\left( r + 1 \right)}{2} \right]} = \frac{r\left( r + 1 \right)}{2} = \frac{1}{2}\left( r^2 + r \right)\]

Now,

\[ \sum^n_{r = 1} \frac{S_r}{s_r} = \sum^n_{r = 1} \frac{1}{2}\left( r^2 + r \right)\]

\[ = \frac{1}{2}\left( \sum^n_{r = 1} r^2 + \sum^n_{r = 1} r \right)\]

\[ = \frac{1}{2}\left[ \frac{n\left( n + 1 \right)\left( 2n + 1 \right)}{6} + \frac{n\left( n + 1 \right)}{2} \right]\]

\[ = \frac{1}{2} \times \frac{n\left( n + 1 \right)}{2} \times \left[ \frac{\left( 2n + 1 \right)}{3} + 1 \right]\]

\[ = \frac{n\left( n + 1 \right)}{4}\left[ \frac{2n + 1 + 3}{3} \right]\]

\[ = \frac{n\left( n + 1 \right)}{4}\left[ \frac{2n + 4}{3} \right]\]

\[ = \frac{n\left( n + 1 \right)}{4} \times \frac{2\left( n + 2 \right)}{3}\]

\[ = \frac{n\left( n + 1 \right)\left( n + 2 \right)}{6}\]

shaalaa.com
  या प्रश्नात किंवा उत्तरात काही त्रुटी आहे का?
पाठ 21: Some special series - Exercise 21.3 [पृष्ठ १९]

APPEARS IN

आरडी शर्मा Mathematics [English] Class 11
पाठ 21 Some special series
Exercise 21.3 | Q 8 | पृष्ठ १९

व्हिडिओ ट्यूटोरियलVIEW ALL [1]

संबंधित प्रश्‍न

Find the sum to n terms of the series 1 × 2 + 2 × 3 + 3 × 4 + 4 × 5 + …


Find the sum to n terms of the series 1 × 2 × 3 + 2 × 3 × 4 + 3 × 4 × 5 + …


Find the sum to n terms of the series 3 × 12 + 5 × 22 + 7 × 32 + …


Find the sum to n terms of the series 3 × 8 + 6 × 11 + 9 × 14 +…


Find the sum to n terms of the series 12 + (12 + 22) + (12 + 22 + 32) + …


Find the sum to n terms of the series whose nth terms is given by n2 + 2n


Show that  `(1xx2^2 + 2xx3^2 + ...+nxx(n+1)^2)/(1^2 xx 2 + 2^2 xx3 + ... + n^2xx (n+1))` = `(3n + 5)/(3n + 1)`


22 + 42 + 62 + 82 + ...


1.2.5 + 2.3.6 + 3.4.7 + ...


1.2.4 + 2.3.7 +3.4.10 + ...


3 × 12 + 5 ×22 + 7 × 32 + ...


Find the sum of the series whose nth term is:

2n2 − 3n + 5


Find the sum of the series whose nth term is:

n (n + 1) (n + 4)


Find the 20th term and the sum of 20 terms of the series 2 × 4 + 4 × 6 + 6 × 8 + ...


Write the sum of the series 2 + 4 + 6 + 8 + ... + 2n.


3 + 7 + 14 + 24 + 37 + ...


1 + 3 + 6 + 10 + 15 + ...


1 + 4 + 13 + 40 + 121 + ...


4 + 6 + 9 + 13 + 18 + ...


2 + 4 + 7 + 11 + 16 + ...


\[\frac{1}{1 . 4} + \frac{1}{4 . 7} + \frac{1}{7 . 10} + . . .\]


The value of  \[\sum^n_{r = 1} \left\{ (2r - 1) a + \frac{1}{b^r} \right\}\] is equal to


If Sn = \[\sum^n_{r = 1} \frac{1 + 2 + 2^2 + . . . \text { Sum to r terms }}{2^r}\], then Sn is equal to


The sum to n terms of the series \[\frac{1}{\sqrt{1} + \sqrt{3}} + \frac{1}{\sqrt{3} + \sqrt{5}} + \frac{1}{\sqrt{5} + \sqrt{7}} + . . . . + . . . .\]  is


Sum of n terms of the series \[\sqrt{2} + \sqrt{8} + \sqrt{18} + \sqrt{32} +\] .......  is


The sum of 10 terms of the series \[\sqrt{2} + \sqrt{6} + \sqrt{18} +\] .... is

 

The sum of the series 12 + 32 + 52 + ... to n terms is 


The sum of the series \[\frac{2}{3} + \frac{8}{9} + \frac{26}{27} + \frac{80}{81} +\] to n terms is


2 + 5 + 10 + 17 + 26 + ...

 

Find the natural number a for which ` sum_(k = 1)^n f(a + k)` = 16(2n – 1), where the function f satisfies f(x + y) = f(x) . f(y) for all natural numbers x, y and further f(1) = 2.


Find the sum of the series (33 – 23) + (53 – 43) + (73 – 63) + ... to 10 terms


The sum of the series `1/(x + 1) + 2/(x^2 + 1) + 2^2/(x^4 + 1) + ...... + 2^100/(x^(2^100) + 1)` when x = 2 is ______.


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×