Advertisements
Advertisements
प्रश्न
The sum of 10 terms of the series \[\sqrt{2} + \sqrt{6} + \sqrt{18} +\] .... is
पर्याय
\[121 (\sqrt{6} + \sqrt{2})\]
\[243 (\sqrt{3} + 1)\]
\[\frac{121}{\sqrt{3} - 1}\]
\[242 (\sqrt{3} - 1)\]
उत्तर
\[121 (\sqrt{6} + \sqrt{2})\]
Let \[T_n\] be the nth term of the given series.
Thus, we have:
\[T_n = \sqrt{2 \times 3^{n - 1}} = \sqrt{2}\left( \sqrt{3^{n - 1}} \right)\]
Now, let \[S_{10}\] be the sum of 10 terms of the given series.
Thus, we have:
\[S_{10} = \sqrt{2} \sum^{10}_{k = 1} \left( \sqrt{3^\left( k - 1 \right)} \right)\]
\[ \Rightarrow S_{10} = \sqrt{2}\left( 1 + \sqrt{3} + \sqrt{3^2} + . . . + \sqrt{3^9} \right)\]
\[ \Rightarrow S_{10} = \sqrt{2}\left( \frac{\sqrt{3^{10}} - 1}{\sqrt{3} - 1} \right)\]
\[ \Rightarrow S_{10n} = \sqrt{2}\left( \frac{3^5 - 1}{\sqrt{3} - 1} \right)\left( \frac{\sqrt{3} + 1}{\sqrt{3} + 1} \right)\]
\[ \Rightarrow S_{10} = \frac{\sqrt{2}}{2}\left( 3^5 - 1 \right)\left( \sqrt{3} + 1 \right)\]
\[ \Rightarrow S_{10} = \frac{1}{2}\left( 242 \right)\left( \sqrt{6} + \sqrt{2} \right)\]
\[ \Rightarrow S_{10} = 121 \left( \sqrt{6} + \sqrt{2} \right)\]
APPEARS IN
संबंधित प्रश्न
Find the sum to n terms of the series 1 × 2 + 2 × 3 + 3 × 4 + 4 × 5 + …
Find the sum to n terms of the series 3 × 12 + 5 × 22 + 7 × 32 + …
Find the sum to n terms of the series 3 × 8 + 6 × 11 + 9 × 14 +…
Find the sum to n terms of the series 12 + (12 + 22) + (12 + 22 + 32) + …
Find the sum to n terms of the series whose nth terms is given by n2 + 2n
Find the sum to n terms of the series whose nth terms is given by (2n – 1)2
Show that `(1xx2^2 + 2xx3^2 + ...+nxx(n+1)^2)/(1^2 xx 2 + 2^2 xx3 + ... + n^2xx (n+1))` = `(3n + 5)/(3n + 1)`
22 + 42 + 62 + 82 + ...
1 + (1 + 2) + (1 + 2 + 3) + (1 + 2 + 3 + 4) + ...
1 × 2 + 2 × 3 + 3 × 4 + 4 × 5 + ...
Find the sum of the series whose nth term is:
2n3 + 3n2 − 1
Write the sum of the series 2 + 4 + 6 + 8 + ... + 2n.
Write the sum of the series 12 − 22 + 32 − 42 + 52 − 62 + ... + (2n − 1)2 − (2n)2.
1 + 3 + 7 + 13 + 21 + ...
1 + 3 + 6 + 10 + 15 + ...
1 + 4 + 13 + 40 + 121 + ...
\[\frac{1}{1 . 4} + \frac{1}{4 . 7} + \frac{1}{7 . 10} + . . .\]
\[\frac{1}{1 . 6} + \frac{1}{6 . 11} + \frac{1}{11 . 14} + \frac{1}{14 . 19} + . . . + \frac{1}{(5n - 4) (5n + 1)}\]
The value of \[\sum^n_{r = 1} \left\{ (2r - 1) a + \frac{1}{b^r} \right\}\] is equal to
If ∑ n = 210, then ∑ n2 =
Write the sum of 20 terms of the series \[1 + \frac{1}{2}(1 + 2) + \frac{1}{3}(1 + 2 + 3) + . . . .\]
Write the 50th term of the series 2 + 3 + 6 + 11 + 18 + ...
The sum to n terms of the series \[\frac{1}{\sqrt{1} + \sqrt{3}} + \frac{1}{\sqrt{3} + \sqrt{5}} + \frac{1}{\sqrt{5} + \sqrt{7}} + . . . . + . . . .\] is
The sum of the series \[\frac{2}{3} + \frac{8}{9} + \frac{26}{27} + \frac{80}{81} +\] to n terms is
Write the sum to n terms of a series whose rth term is r + 2r.
2 + 5 + 10 + 17 + 26 + ...
Find the sum of the series (33 – 23) + (53 – 43) + (73 – 63) + … to n terms
The sum of all natural numbers 'n' such that 100 < n < 200 and H.C.F. (91, n) > 1 is ______.
A GP consists of an even number of terms. If the sum of all the terms is 5 times the sum of the terms occupying odd places, the common ratio will be equal to ______.
Let Sn(x) = `log_a 1/2 x + log_a 1/3 x + log_a 1/6 x + log_a 1/11 x + log_a 1/18 x + log_a 1/27x + ` ...... up to n-terms, where a > 1. If S24(x) = 1093 and S12(2x) = 265, then value of a is equal to ______.