Advertisements
Advertisements
Question
The sum of 10 terms of the series \[\sqrt{2} + \sqrt{6} + \sqrt{18} +\] .... is
Options
\[121 (\sqrt{6} + \sqrt{2})\]
\[243 (\sqrt{3} + 1)\]
\[\frac{121}{\sqrt{3} - 1}\]
\[242 (\sqrt{3} - 1)\]
Solution
\[121 (\sqrt{6} + \sqrt{2})\]
Let \[T_n\] be the nth term of the given series.
Thus, we have:
\[T_n = \sqrt{2 \times 3^{n - 1}} = \sqrt{2}\left( \sqrt{3^{n - 1}} \right)\]
Now, let \[S_{10}\] be the sum of 10 terms of the given series.
Thus, we have:
\[S_{10} = \sqrt{2} \sum^{10}_{k = 1} \left( \sqrt{3^\left( k - 1 \right)} \right)\]
\[ \Rightarrow S_{10} = \sqrt{2}\left( 1 + \sqrt{3} + \sqrt{3^2} + . . . + \sqrt{3^9} \right)\]
\[ \Rightarrow S_{10} = \sqrt{2}\left( \frac{\sqrt{3^{10}} - 1}{\sqrt{3} - 1} \right)\]
\[ \Rightarrow S_{10n} = \sqrt{2}\left( \frac{3^5 - 1}{\sqrt{3} - 1} \right)\left( \frac{\sqrt{3} + 1}{\sqrt{3} + 1} \right)\]
\[ \Rightarrow S_{10} = \frac{\sqrt{2}}{2}\left( 3^5 - 1 \right)\left( \sqrt{3} + 1 \right)\]
\[ \Rightarrow S_{10} = \frac{1}{2}\left( 242 \right)\left( \sqrt{6} + \sqrt{2} \right)\]
\[ \Rightarrow S_{10} = 121 \left( \sqrt{6} + \sqrt{2} \right)\]
APPEARS IN
RELATED QUESTIONS
Find the sum to n terms of the series `1/(1xx2) + 1/(2xx3)+1/(3xx4)+ ...`
Find the sum to n terms of the series 12 + (12 + 22) + (12 + 22 + 32) + …
Find the sum to n terms of the series whose nth terms is given by n2 + 2n
Show that `(1xx2^2 + 2xx3^2 + ...+nxx(n+1)^2)/(1^2 xx 2 + 2^2 xx3 + ... + n^2xx (n+1))` = `(3n + 5)/(3n + 1)`
13 + 33 + 53 + 73 + ...
1 + (1 + 2) + (1 + 2 + 3) + (1 + 2 + 3 + 4) + ...
3 × 12 + 5 ×22 + 7 × 32 + ...
Find the sum of the series whose nth term is:
n (n + 1) (n + 4)
Write the sum of the series 2 + 4 + 6 + 8 + ... + 2n.
Write the sum of the series 12 − 22 + 32 − 42 + 52 − 62 + ... + (2n − 1)2 − (2n)2.
1 + 3 + 7 + 13 + 21 + ...
3 + 7 + 14 + 24 + 37 + ...
1 + 3 + 6 + 10 + 15 + ...
1 + 4 + 13 + 40 + 121 + ...
4 + 6 + 9 + 13 + 18 + ...
2 + 4 + 7 + 11 + 16 + ...
The value of \[\sum^n_{r = 1} \left\{ (2r - 1) a + \frac{1}{b^r} \right\}\] is equal to
If ∑ n = 210, then ∑ n2 =
Write the sum of 20 terms of the series \[1 + \frac{1}{2}(1 + 2) + \frac{1}{3}(1 + 2 + 3) + . . . .\]
Write the 50th term of the series 2 + 3 + 6 + 11 + 18 + ...
The sum to n terms of the series \[\frac{1}{\sqrt{1} + \sqrt{3}} + \frac{1}{\sqrt{3} + \sqrt{5}} + \frac{1}{\sqrt{5} + \sqrt{7}} + . . . . + . . . .\] is
Sum of n terms of the series \[\sqrt{2} + \sqrt{8} + \sqrt{18} + \sqrt{32} +\] ....... is
The sum of the series 12 + 32 + 52 + ... to n terms is
If \[\sum^n_{r = 1} r = 55, \text{ find } \sum^n_{r = 1} r^3\] .
If the sum of first n even natural numbers is equal to k times the sum of first n odd natural numbers, then write the value of k.
3 + 5 + 9 + 15 + 23 + ...
2 + 5 + 10 + 17 + 26 + ...
Let Sn denote the sum of the cubes of the first n natural numbers and sn denote the sum of the first n natural numbers. Then `sum_(r = 1)^n S_r/s_r` equals ______.
If |x| < 1, |y| < 1 and x ≠ y, then the sum to infinity of the following series:
(x + y) + (x2 + xy + y2) + (x3 + x2y + xy2 + y3) + .... is ______.