English

The Sum to N Terms of the Series 1 √ 1 + √ 3 + 1 √ 3 + √ 5 + 1 √ 5 + √ 7 + . . . . + . . . . is - Mathematics

Advertisements
Advertisements

Question

The sum to n terms of the series \[\frac{1}{\sqrt{1} + \sqrt{3}} + \frac{1}{\sqrt{3} + \sqrt{5}} + \frac{1}{\sqrt{5} + \sqrt{7}} + . . . . + . . . .\]  is

Options

  • \[\sqrt{2n + 1}\]

  • \[\frac{1}{2}\sqrt{2n + 1}\]

  • \[\sqrt{2n + 1} - 1\]

  • \[\frac{1}{2}\left\{ \sqrt{2n + 1} - 1 \right\}\]

     

MCQ

Solution

\[\frac{1}{2}\left\{ \sqrt{2n + 1} - 1 \right\}\]

Let \[T_n\] be the nth term of the given series.
Thus, we have:

\[T_n = \frac{1}{\sqrt{2n - 1} + \sqrt{2n + 1}} = \frac{\sqrt{2n + 1} - \sqrt{2n - 1}}{2}\]

Now,
Let \[S_n\]  be the sum of n terms of the given series.

Thus, we have:

\[S_n = \sum^n_{k = 1} T_k \]

\[ = \sum^n_{k = 1} \left( \frac{\sqrt{2k + 1} - \sqrt{2k - 1}}{2} \right)\]

\[ = \frac{1}{2} \sum^n_{k = 1} \left( \sqrt{2k + 1} - \sqrt{2k - 1} \right)\]

\[ = \frac{1}{2}\left[ \left( \sqrt{3} - \sqrt{1} \right) + \left( \sqrt{5} - \sqrt{3} \right) + \left( \sqrt{7} - \sqrt{5} \right) + . . . + \left( \sqrt{2n + 1} - \sqrt{2n - 1} \right) \right]\]

\[ = \frac{1}{2}\left\{ \left( - 1 \right) + \sqrt{2n + 1} \right\}\]

\[ = \frac{1}{2}\left\{ \sqrt{2n + 1} - 1 \right\}\]

shaalaa.com
  Is there an error in this question or solution?
Chapter 21: Some special series - Exercise 21.4 [Page 19]

APPEARS IN

RD Sharma Mathematics [English] Class 11
Chapter 21 Some special series
Exercise 21.4 | Q 1 | Page 19

Video TutorialsVIEW ALL [1]

RELATED QUESTIONS

Find the sum to n terms of the series 1 × 2 + 2 × 3 + 3 × 4 + 4 × 5 + …


Find the sum to n terms of the series 1 × 2 × 3 + 2 × 3 × 4 + 3 × 4 × 5 + …


Find the sum to n terms of the series `1/(1xx2) + 1/(2xx3)+1/(3xx4)+ ...`


Find the sum to n terms of the series 3 × 8 + 6 × 11 + 9 × 14 +…


Find the sum to n terms of the series 12 + (12 + 22) + (12 + 22 + 32) + …


Find the sum to n terms of the series whose nth terms is given by n2 + 2n


1+ 3+ 53 + 73 + ...


1.2.5 + 2.3.6 + 3.4.7 + ...


Find the sum of the series whose nth term is:

 2n3 + 3n2 − 1


Find the sum of the series whose nth term is:

n3 − 3n


Write the sum of the series 2 + 4 + 6 + 8 + ... + 2n.


1 + 3 + 6 + 10 + 15 + ...


4 + 6 + 9 + 13 + 18 + ...


\[\frac{1}{1 . 6} + \frac{1}{6 . 11} + \frac{1}{11 . 14} + \frac{1}{14 . 19} + . . . + \frac{1}{(5n - 4) (5n + 1)}\]


The value of  \[\sum^n_{r = 1} \left\{ (2r - 1) a + \frac{1}{b^r} \right\}\] is equal to


If ∑ n = 210, then ∑ n2 =


If Sn = \[\sum^n_{r = 1} \frac{1 + 2 + 2^2 + . . . \text { Sum to r terms }}{2^r}\], then Sn is equal to


Write the 50th term of the series 2 + 3 + 6 + 11 + 18 + ...


Let Sn denote the sum of the cubes of first n natural numbers and sn denote the sum of first n natural numbers. Then, write the value of \[\sum^n_{r = 1} \frac{S_r}{s_r}\] .


If \[1 + \frac{1 + 2}{2} + \frac{1 + 2 + 3}{3} + . . . .\] to n terms is S, then S is equal to


Sum of n terms of the series \[\sqrt{2} + \sqrt{8} + \sqrt{18} + \sqrt{32} +\] .......  is


The sum of 10 terms of the series \[\sqrt{2} + \sqrt{6} + \sqrt{18} +\] .... is

 

The sum of the series 12 + 32 + 52 + ... to n terms is 


The sum of the series \[\frac{2}{3} + \frac{8}{9} + \frac{26}{27} + \frac{80}{81} +\] to n terms is


Find the natural number a for which ` sum_(k = 1)^n f(a + k)` = 16(2n – 1), where the function f satisfies f(x + y) = f(x) . f(y) for all natural numbers x, y and further f(1) = 2.


Find the sum of the series (33 – 23) + (53 – 43) + (73 – 63) + … to n terms


Let Sn denote the sum of the cubes of the first n natural numbers and sn denote the sum of the first n natural numbers. Then `sum_(r = 1)^n S_r/s_r` equals ______.


If |x| < 1, |y| < 1 and x ≠ y, then the sum to infinity of the following series:

(x + y) + (x2 + xy + y2) + (x3 + x2y + xy2 + y3) + .... is ______.


The sum of all natural numbers 'n' such that 100 < n < 200 and H.C.F. (91, n) > 1 is ______.


A GP consists of an even number of terms. If the sum of all the terms is 5 times the sum of the terms occupying odd places, the common ratio will be equal to ______.


The sum `sum_(k = 1)^20k 1/2^k` is equal to ______.


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×