English

Let Sn Denote the Sum of the Cubes of First N Natural Numbers and Sn Denote the Sum of First N Natural Numbers. Then, Write the Value of - Mathematics

Advertisements
Advertisements

Question

Let Sn denote the sum of the cubes of first n natural numbers and sn denote the sum of first n natural numbers. Then, write the value of \[\sum^n_{r = 1} \frac{S_r}{s_r}\] .

Solution

\[\text { We know that } , S_r = 1^3 + 2^3 + 3^3 + . . . + r^3 = \left[ \frac{r\left( r + 1 \right)}{2} \right]^2 \]

\[\text { And }, s_r = 1 + 2 + 3 + . . . + r = \frac{r\left( r + 1 \right)}{2}\]

\[As, \frac{S_r}{s_r} = \frac{\left[ \frac{r\left( r + 1 \right)}{2} \right]^2}{\left[ \frac{r\left( r + 1 \right)}{2} \right]} = \frac{r\left( r + 1 \right)}{2} = \frac{1}{2}\left( r^2 + r \right)\]

Now,

\[ \sum^n_{r = 1} \frac{S_r}{s_r} = \sum^n_{r = 1} \frac{1}{2}\left( r^2 + r \right)\]

\[ = \frac{1}{2}\left( \sum^n_{r = 1} r^2 + \sum^n_{r = 1} r \right)\]

\[ = \frac{1}{2}\left[ \frac{n\left( n + 1 \right)\left( 2n + 1 \right)}{6} + \frac{n\left( n + 1 \right)}{2} \right]\]

\[ = \frac{1}{2} \times \frac{n\left( n + 1 \right)}{2} \times \left[ \frac{\left( 2n + 1 \right)}{3} + 1 \right]\]

\[ = \frac{n\left( n + 1 \right)}{4}\left[ \frac{2n + 1 + 3}{3} \right]\]

\[ = \frac{n\left( n + 1 \right)}{4}\left[ \frac{2n + 4}{3} \right]\]

\[ = \frac{n\left( n + 1 \right)}{4} \times \frac{2\left( n + 2 \right)}{3}\]

\[ = \frac{n\left( n + 1 \right)\left( n + 2 \right)}{6}\]

shaalaa.com
  Is there an error in this question or solution?
Chapter 21: Some special series - Exercise 21.3 [Page 19]

APPEARS IN

RD Sharma Mathematics [English] Class 11
Chapter 21 Some special series
Exercise 21.3 | Q 8 | Page 19

Video TutorialsVIEW ALL [1]

RELATED QUESTIONS

Find the sum to n terms of the series 1 × 2 + 2 × 3 + 3 × 4 + 4 × 5 + …


Find the sum to n terms of the series 3 × 12 + 5 × 22 + 7 × 32 + …


Find the sum to n terms of the series `1/(1xx2) + 1/(2xx3)+1/(3xx4)+ ...`


Find the sum to n terms of the series  52 + 62 + 72 + ... + 202


Find the sum to n terms of the series 3 × 8 + 6 × 11 + 9 × 14 +…


Find the sum to n terms of the series whose nth term is given by n (n + 1) (n + 4).


Find the sum to n terms of the series whose nth terms is given by n2 + 2n


1+ 3+ 53 + 73 + ...


22 + 42 + 62 + 82 + ...


1.2.5 + 2.3.6 + 3.4.7 + ...


1 × 2 + 2 × 3 + 3 × 4 + 4 × 5 + ...


Find the sum of the series whose nth term is:

n (n + 1) (n + 4)


Write the sum of the series 2 + 4 + 6 + 8 + ... + 2n.


1 + 3 + 7 + 13 + 21 + ...


3 + 7 + 14 + 24 + 37 + ...


2 + 4 + 7 + 11 + 16 + ...


\[\frac{1}{1 . 4} + \frac{1}{4 . 7} + \frac{1}{7 . 10} + . . .\]


\[\frac{1}{1 . 6} + \frac{1}{6 . 11} + \frac{1}{11 . 14} + \frac{1}{14 . 19} + . . . + \frac{1}{(5n - 4) (5n + 1)}\]


The value of  \[\sum^n_{r = 1} \left\{ (2r - 1) a + \frac{1}{b^r} \right\}\] is equal to


If ∑ n = 210, then ∑ n2 =


Write the sum of 20 terms of the series \[1 + \frac{1}{2}(1 + 2) + \frac{1}{3}(1 + 2 + 3) + . . . .\]


Write the 50th term of the series 2 + 3 + 6 + 11 + 18 + ...


The sum of the series

\[\frac{1}{\log_2 4} + \frac{1}{\log_4 4} + \frac{1}{\log_8 4} + . . . . + \frac{1}{\log_2^n 4}\] is


Sum of n terms of the series \[\sqrt{2} + \sqrt{8} + \sqrt{18} + \sqrt{32} +\] .......  is


The sum of the series \[\frac{2}{3} + \frac{8}{9} + \frac{26}{27} + \frac{80}{81} +\] to n terms is


3 + 5 + 9 + 15 + 23 + ...

 

Find the sum of the series (33 – 23) + (53 – 43) + (73 – 63) + … to n terms


Let Sn denote the sum of the cubes of the first n natural numbers and sn denote the sum of the first n natural numbers. Then `sum_(r = 1)^n S_r/s_r` equals ______.


If |x| < 1, |y| < 1 and x ≠ y, then the sum to infinity of the following series:

(x + y) + (x2 + xy + y2) + (x3 + x2y + xy2 + y3) + .... is ______.


The sum of all natural numbers 'n' such that 100 < n < 200 and H.C.F. (91, n) > 1 is ______.


A GP consists of an even number of terms. If the sum of all the terms is 5 times the sum of the terms occupying odd places, the common ratio will be equal to ______.


Let Sn(x) = `log_a  1/2 x + log_a  1/3 x + log_a  1/6 x + log_a  1/11 x  +  log_a  1/18 x + log_a  1/27x  + ` ...... up to n-terms, where a > 1. If S24(x) = 1093 and S12(2x) = 265, then value of a is equal to ______.


The sum `sum_(k = 1)^20k 1/2^k` is equal to ______.


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×