English

Find the Sum of the Series Whose Nth Term Is: N (N + 1) (N + 4) - Mathematics

Advertisements
Advertisements

Question

Find the sum of the series whose nth term is:

n (n + 1) (n + 4)

Solution

Let \[T_n\] be the nth term of the given series.
Thus, we have:

\[T_n = n\left( n + 1 \right)\left( n + 4 \right) = \left( n^2 + n \right)\left( n + 4 \right) = n^3 + 5 n^2 + 4n\]

Let

\[S_n\] be the sum of n terms of the given series.
Now, 

\[S_n = \sum^n_{k = 1} T_k\]

\[\Rightarrow S_n = \sum^n_{k = 1} \left( k^3 + 5 k^2 + 4k \right)\]

\[ \Rightarrow S_n = \sum^n_{k = 1} k^3 + {5\sum}^n_{k = 1} k^2 + 4 \sum^n_{k = 1} k\]

\[ \Rightarrow S_n = \frac{n^2 \left( n + 1 \right)^2}{4} + \frac{5n\left( n + 1 \right)\left( 2n + 1 \right)}{6} + \frac{4n\left( n + 1 \right)}{2}\]

\[ \Rightarrow S_n = \frac{n\left( n + 1 \right)}{2}\left[ \frac{n\left( n + 1 \right)}{2} + \frac{5\left( 2n + 1 \right)}{3} + 4 \right]\]

\[ \Rightarrow S_n = \frac{n\left( n + 1 \right)}{12}\left[ 3n\left( n + 1 \right) + 10\left( 2n + 1 \right) + 24 \right]\]

\[ \Rightarrow S_n = \frac{n\left( n + 1 \right)}{12}\left( 3 n^2 + 23n + 34 \right)\]

shaalaa.com
  Is there an error in this question or solution?
Chapter 21: Some special series - Exercise 21.1 [Page 10]

APPEARS IN

RD Sharma Mathematics [English] Class 11
Chapter 21 Some special series
Exercise 21.1 | Q 8.4 | Page 10

Video TutorialsVIEW ALL [1]

RELATED QUESTIONS

Find the sum to n terms of the series 3 × 12 + 5 × 22 + 7 × 32 + …


Find the sum to n terms of the series  52 + 62 + 72 + ... + 202


Find the sum to n terms of the series 3 × 8 + 6 × 11 + 9 × 14 +…


Find the sum to n terms of the series whose nth terms is given by n2 + 2n


Find the sum to n terms of the series whose nth terms is given by (2n – 1)2


Show that  `(1xx2^2 + 2xx3^2 + ...+nxx(n+1)^2)/(1^2 xx 2 + 2^2 xx3 + ... + n^2xx (n+1))` = `(3n + 5)/(3n + 1)`


1+ 3+ 53 + 73 + ...


22 + 42 + 62 + 82 + ...


1.2.5 + 2.3.6 + 3.4.7 + ...


1.2.4 + 2.3.7 +3.4.10 + ...


3 × 12 + 5 ×22 + 7 × 32 + ...


Find the sum of the series whose nth term is:

2n2 − 3n + 5


Find the sum of the series whose nth term is:

n3 − 3n


Find the 20th term and the sum of 20 terms of the series 2 × 4 + 4 × 6 + 6 × 8 + ...


1 + 4 + 13 + 40 + 121 + ...


4 + 6 + 9 + 13 + 18 + ...


If ∑ n = 210, then ∑ n2 =


Write the 50th term of the series 2 + 3 + 6 + 11 + 18 + ...


Let Sn denote the sum of the cubes of first n natural numbers and sn denote the sum of first n natural numbers. Then, write the value of \[\sum^n_{r = 1} \frac{S_r}{s_r}\] .


The sum to n terms of the series \[\frac{1}{\sqrt{1} + \sqrt{3}} + \frac{1}{\sqrt{3} + \sqrt{5}} + \frac{1}{\sqrt{5} + \sqrt{7}} + . . . . + . . . .\]  is


If \[1 + \frac{1 + 2}{2} + \frac{1 + 2 + 3}{3} + . . . .\] to n terms is S, then S is equal to


Sum of n terms of the series \[\sqrt{2} + \sqrt{8} + \sqrt{18} + \sqrt{32} +\] .......  is


The sum of 10 terms of the series \[\sqrt{2} + \sqrt{6} + \sqrt{18} +\] .... is

 

Write the sum to n terms of a series whose rth term is r + 2r.

 

If \[\sum^n_{r = 1} r = 55, \text{ find }  \sum^n_{r = 1} r^3\] .

 


If the sum of first n even natural numbers is equal to k times the sum of first n odd natural numbers, then write the value of k.


3 + 5 + 9 + 15 + 23 + ...

 

Find the natural number a for which ` sum_(k = 1)^n f(a + k)` = 16(2n – 1), where the function f satisfies f(x + y) = f(x) . f(y) for all natural numbers x, y and further f(1) = 2.


Find the sum of the series (33 – 23) + (53 – 43) + (73 – 63) + … to n terms


Find the sum of the series (33 – 23) + (53 – 43) + (73 – 63) + ... to 10 terms


Let Sn denote the sum of the cubes of the first n natural numbers and sn denote the sum of the first n natural numbers. Then `sum_(r = 1)^n S_r/s_r` equals ______.


The sum of the series `1/(x + 1) + 2/(x^2 + 1) + 2^2/(x^4 + 1) + ...... + 2^100/(x^(2^100) + 1)` when x = 2 is ______.


The sum of all natural numbers 'n' such that 100 < n < 200 and H.C.F. (91, n) > 1 is ______.


Let Sn(x) = `log_a  1/2 x + log_a  1/3 x + log_a  1/6 x + log_a  1/11 x  +  log_a  1/18 x + log_a  1/27x  + ` ...... up to n-terms, where a > 1. If S24(x) = 1093 and S12(2x) = 265, then value of a is equal to ______.


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×