Advertisements
Advertisements
Question
3 × 12 + 5 ×22 + 7 × 32 + ...
Solution
Let \[T_n\] be the nth term of the given series.
Thus, we have:
\[T_n = \left( 2n + 1 \right) n^2 = 2 n^3 + n^2\]
Now, let \[S_n\] be the sum of n terms of the given series.
Thus, we have:
\[S_n = \sum^n_{k = 1} T_k\]
\[\Rightarrow S_n = \sum^n_{k = 1} \left( 2 k^3 + k^2 \right)\]
\[ \Rightarrow S_n = {2\sum}^n_{k = 1} k^3 + \sum^n_{k = 1} k^2 \]
\[ \Rightarrow S_n = \left[ \frac{2 n^2 \left( n + 1 \right)^2}{4} + \frac{n\left( n + 1 \right)\left( 2n + 1 \right)}{6} \right]\]
\[ \Rightarrow S_n = \left[ \frac{n^2 \left( n + 1 \right)^2}{2} + \frac{n\left( n + 1 \right)\left( 2n + 1 \right)}{6} \right]\]
\[ \Rightarrow S_n = \frac{n\left( n + 1 \right)}{2}\left[ n\left( n + 1 \right) + \frac{2n + 1}{3} \right]\]
\[ \Rightarrow S_n = \frac{n\left( n + 1 \right)}{2}\left( \frac{3 n^2 + 3n + 2n + 1}{3} \right)\]
\[ \Rightarrow S_n = \frac{n\left( n + 1 \right)}{2}\left( \frac{3 n^2 + 5n + 1}{3} \right)\]
\[ \Rightarrow S_n = \frac{n\left( n + 1 \right)}{6}\left( 3 n^2 + 5n + 1 \right)\]
APPEARS IN
RELATED QUESTIONS
Find the sum to n terms of the series 1 × 2 + 2 × 3 + 3 × 4 + 4 × 5 + …
Find the sum to n terms of the series 3 × 12 + 5 × 22 + 7 × 32 + …
Find the sum to n terms of the series `1/(1xx2) + 1/(2xx3)+1/(3xx4)+ ...`
Find the sum to n terms of the series whose nth terms is given by n2 + 2n
Find the sum to n terms of the series whose nth terms is given by (2n – 1)2
Show that `(1xx2^2 + 2xx3^2 + ...+nxx(n+1)^2)/(1^2 xx 2 + 2^2 xx3 + ... + n^2xx (n+1))` = `(3n + 5)/(3n + 1)`
13 + 33 + 53 + 73 + ...
22 + 42 + 62 + 82 + ...
1.2.5 + 2.3.6 + 3.4.7 + ...
1.2.4 + 2.3.7 +3.4.10 + ...
1 + (1 + 2) + (1 + 2 + 3) + (1 + 2 + 3 + 4) + ...
1 × 2 + 2 × 3 + 3 × 4 + 4 × 5 + ...
Find the sum of the series whose nth term is:
2n2 − 3n + 5
Find the sum of the series whose nth term is:
n3 − 3n
Find the sum of the series whose nth term is:
n (n + 1) (n + 4)
Write the sum of the series 2 + 4 + 6 + 8 + ... + 2n.
Write the sum of the series 12 − 22 + 32 − 42 + 52 − 62 + ... + (2n − 1)2 − (2n)2.
1 + 4 + 13 + 40 + 121 + ...
2 + 4 + 7 + 11 + 16 + ...
\[\frac{1}{1 . 6} + \frac{1}{6 . 11} + \frac{1}{11 . 14} + \frac{1}{14 . 19} + . . . + \frac{1}{(5n - 4) (5n + 1)}\]
The value of \[\sum^n_{r = 1} \left\{ (2r - 1) a + \frac{1}{b^r} \right\}\] is equal to
If ∑ n = 210, then ∑ n2 =
If Sn = \[\sum^n_{r = 1} \frac{1 + 2 + 2^2 + . . . \text { Sum to r terms }}{2^r}\], then Sn is equal to
Write the sum of 20 terms of the series \[1 + \frac{1}{2}(1 + 2) + \frac{1}{3}(1 + 2 + 3) + . . . .\]
The sum to n terms of the series \[\frac{1}{\sqrt{1} + \sqrt{3}} + \frac{1}{\sqrt{3} + \sqrt{5}} + \frac{1}{\sqrt{5} + \sqrt{7}} + . . . . + . . . .\] is
The sum of 10 terms of the series \[\sqrt{2} + \sqrt{6} + \sqrt{18} +\] .... is
The sum of the series 12 + 32 + 52 + ... to n terms is
3 + 5 + 9 + 15 + 23 + ...
2 + 5 + 10 + 17 + 26 + ...
Find the sum of the series (33 – 23) + (53 – 43) + (73 – 63) + … to n terms
A GP consists of an even number of terms. If the sum of all the terms is 5 times the sum of the terms occupying odd places, the common ratio will be equal to ______.
Let Sn(x) = `log_a 1/2 x + log_a 1/3 x + log_a 1/6 x + log_a 1/11 x + log_a 1/18 x + log_a 1/27x + ` ...... up to n-terms, where a > 1. If S24(x) = 1093 and S12(2x) = 265, then value of a is equal to ______.