English

The Sum of the Series 12 + 32 + 52 + ... to N Terms is - Mathematics

Advertisements
Advertisements

Question

The sum of the series 12 + 32 + 52 + ... to n terms is 

Options

  • \[\frac{n (n + 1) (2n + 1)}{2}\]

  • \[\frac{n (2n - 1) (2n + 1)}{3}\]

  • \[\frac{(n - 1 )^2 (2n + 1)}{6}\]

  • \[\frac{(2n + 1 )^3}{3}\]

MCQ

Solution

\[\frac{n (2n - 1) (2n + 1)}{3}\]

Let \[T_n\]  be the nth term of the given series.
Thus, we have:

\[T_n = \left( 2n - 1 \right)^2 = 4 n^2 + 1 - 4n\]

Now, let

\[S_n\] be the sum of n terms of the given series.
Thus, we have:

\[S_n = \sum^n_{k = 1} \left( 4 k^2 + 1 - 4k \right)\]

\[ \Rightarrow S_n = {4\sum}^n_{k = 1} k^2 + \sum 1^n_{k = 1} - 4 \sum^n_{k = 1} k\]

\[ \Rightarrow S_n = \frac{4n\left( n + 1 \right)\left( 2n + 1 \right)}{6} + n - \frac{4n\left( n + 1 \right)}{2}\]

\[ \Rightarrow S_n = \frac{2n\left( n + 1 \right)\left( 2n + 1 \right)}{3} + n - 2n\left( n + 1 \right)\]

\[ \Rightarrow S_n = n\left[ \frac{2\left( n + 1 \right)\left( 2n + 1 \right)}{3} + 1 - 2\left( n + 1 \right) \right]\]

\[ \Rightarrow S_n = \frac{n}{3}\left[ \left( 2n + 2 \right)\left( 2n + 1 \right) + 3 - 6\left( n + 1 \right) \right]\]

\[ \Rightarrow S_n = \frac{n}{3}\left[ \left( 4 n^2 - 1 \right) \right]\]

\[ \Rightarrow S_n = \frac{n\left( 2n - 1 \right)\left( 2n + 1 \right)}{3}\]

shaalaa.com
  Is there an error in this question or solution?
Chapter 21: Some special series - Exercise 21.4 [Page 20]

APPEARS IN

RD Sharma Mathematics [English] Class 11
Chapter 21 Some special series
Exercise 21.4 | Q 9 | Page 20

Video TutorialsVIEW ALL [1]

RELATED QUESTIONS

Find the sum to n terms of the series 3 × 12 + 5 × 22 + 7 × 32 + …


Find the sum to n terms of the series 12 + (12 + 22) + (12 + 22 + 32) + …


Find the sum to n terms of the series whose nth terms is given by (2n – 1)2


Show that  `(1xx2^2 + 2xx3^2 + ...+nxx(n+1)^2)/(1^2 xx 2 + 2^2 xx3 + ... + n^2xx (n+1))` = `(3n + 5)/(3n + 1)`


1+ 3+ 53 + 73 + ...


1.2.5 + 2.3.6 + 3.4.7 + ...


1.2.4 + 2.3.7 +3.4.10 + ...


1 + (1 + 2) + (1 + 2 + 3) + (1 + 2 + 3 + 4) + ...


1 × 2 + 2 × 3 + 3 × 4 + 4 × 5 + ...


Find the sum of the series whose nth term is:

 2n3 + 3n2 − 1


Find the sum of the series whose nth term is:

n3 − 3n


Find the sum of the series whose nth term is:

n (n + 1) (n + 4)


Find the 20th term and the sum of 20 terms of the series 2 × 4 + 4 × 6 + 6 × 8 + ...


1 + 3 + 7 + 13 + 21 + ...


4 + 6 + 9 + 13 + 18 + ...


2 + 4 + 7 + 11 + 16 + ...


The value of  \[\sum^n_{r = 1} \left\{ (2r - 1) a + \frac{1}{b^r} \right\}\] is equal to


If ∑ n = 210, then ∑ n2 =


If Sn = \[\sum^n_{r = 1} \frac{1 + 2 + 2^2 + . . . \text { Sum to r terms }}{2^r}\], then Sn is equal to


Write the sum of 20 terms of the series \[1 + \frac{1}{2}(1 + 2) + \frac{1}{3}(1 + 2 + 3) + . . . .\]


Let Sn denote the sum of the cubes of first n natural numbers and sn denote the sum of first n natural numbers. Then, write the value of \[\sum^n_{r = 1} \frac{S_r}{s_r}\] .


The sum to n terms of the series \[\frac{1}{\sqrt{1} + \sqrt{3}} + \frac{1}{\sqrt{3} + \sqrt{5}} + \frac{1}{\sqrt{5} + \sqrt{7}} + . . . . + . . . .\]  is


If \[1 + \frac{1 + 2}{2} + \frac{1 + 2 + 3}{3} + . . . .\] to n terms is S, then S is equal to


The sum of the series \[\frac{2}{3} + \frac{8}{9} + \frac{26}{27} + \frac{80}{81} +\] to n terms is


3 + 5 + 9 + 15 + 23 + ...

 

2 + 5 + 10 + 17 + 26 + ...

 

Find the natural number a for which ` sum_(k = 1)^n f(a + k)` = 16(2n – 1), where the function f satisfies f(x + y) = f(x) . f(y) for all natural numbers x, y and further f(1) = 2.


Find the sum of the series (33 – 23) + (53 – 43) + (73 – 63) + ... to 10 terms


Let Sn denote the sum of the cubes of the first n natural numbers and sn denote the sum of the first n natural numbers. Then `sum_(r = 1)^n S_r/s_r` equals ______.


The sum of all natural numbers 'n' such that 100 < n < 200 and H.C.F. (91, n) > 1 is ______.


A GP consists of an even number of terms. If the sum of all the terms is 5 times the sum of the terms occupying odd places, the common ratio will be equal to ______.


The sum `sum_(k = 1)^20k 1/2^k` is equal to ______.


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×