English

Find the Sum of the Series Whose Nth Term Is: 2n3 + 3n2 − 1 - Mathematics

Advertisements
Advertisements

Question

Find the sum of the series whose nth term is:

 2n3 + 3n2 − 1

Solution

Let \[T_n\] be the nth term of the given series.
Thus, we have:

\[T_n = 2 n^3 + 3 n^2 - 1\]

Let \[S_n\] be the sum of n terms of the given series.
Now,

\[S_n = \sum^n_{k = 1} T_k\]

\[\Rightarrow S_n = \sum^n_{k = 1} \left( 2 k^3 + 3 k^2 - 1 \right)\]

\[ \Rightarrow S_n = {2\sum}^n_{k = 1} k^3 + 3 \sum^n_{k = 1} k^2 - \sum^n_{k = 1} 1\]

\[ \Rightarrow S_n = \frac{2 n^2 \left( n + 1 \right)^2}{4} + \frac{3n\left( n + 1 \right)\left( 2n + 1 \right)}{6} - n\]

\[ \Rightarrow S_n = \frac{n^2 \left( n + 1 \right)^2}{2} + \frac{n\left( n + 1 \right)\left( 2n + 1 \right)}{2} - n\]

\[ \Rightarrow S_n = \frac{n^2 \left( n + 1 \right)^2 + n\left( n + 1 \right)\left( 2n + 1 \right) - 2n}{2}\]

\[ \Rightarrow S_n = \frac{n^2 \left( n^2 + 1 + 2n \right) + \left( n^2 + n \right)\left( 2n + 1 \right) - 2n}{2}\]

\[ \Rightarrow S_n = \frac{\left( n^4 + n^2 + 2 n^3 \right) + \left( 2 n^3 + n^2 + 2 n^2 + n \right) - 2n}{2}\]

\[ \Rightarrow S_n = \frac{n^4 + 4 n^2 + 4 n^3 - n}{2}\]

\[ \Rightarrow S_n = \frac{n\left( n^3 + 4n + 4 n^2 - 1 \right)}{2}\]

shaalaa.com
  Is there an error in this question or solution?
Chapter 21: Some special series - Exercise 21.1 [Page 10]

APPEARS IN

RD Sharma Mathematics [English] Class 11
Chapter 21 Some special series
Exercise 21.1 | Q 8.2 | Page 10

Video TutorialsVIEW ALL [1]

RELATED QUESTIONS

Find the sum to n terms of the series 1 × 2 + 2 × 3 + 3 × 4 + 4 × 5 + …


Find the sum to n terms of the series 1 × 2 × 3 + 2 × 3 × 4 + 3 × 4 × 5 + …


Find the sum to n terms of the series `1/(1xx2) + 1/(2xx3)+1/(3xx4)+ ...`


Find the sum to n terms of the series  52 + 62 + 72 + ... + 202


Find the sum to n terms of the series 12 + (12 + 22) + (12 + 22 + 32) + …


Find the sum to n terms of the series whose nth term is given by n (n + 1) (n + 4).


Find the sum to n terms of the series whose nth terms is given by n2 + 2n


22 + 42 + 62 + 82 + ...


1.2.5 + 2.3.6 + 3.4.7 + ...


1.2.4 + 2.3.7 +3.4.10 + ...


1 + (1 + 2) + (1 + 2 + 3) + (1 + 2 + 3 + 4) + ...


3 × 12 + 5 ×22 + 7 × 32 + ...


Find the sum of the series whose nth term is:

2n2 − 3n + 5


Find the sum of the series whose nth term is:

n (n + 1) (n + 4)


Find the sum of the series whose nth term is:

(2n − 1)2


1 + 3 + 7 + 13 + 21 + ...


1 + 3 + 6 + 10 + 15 + ...


2 + 4 + 7 + 11 + 16 + ...


\[\frac{1}{1 . 6} + \frac{1}{6 . 11} + \frac{1}{11 . 14} + \frac{1}{14 . 19} + . . . + \frac{1}{(5n - 4) (5n + 1)}\]


If Sn = \[\sum^n_{r = 1} \frac{1 + 2 + 2^2 + . . . \text { Sum to r terms }}{2^r}\], then Sn is equal to


The sum to n terms of the series \[\frac{1}{\sqrt{1} + \sqrt{3}} + \frac{1}{\sqrt{3} + \sqrt{5}} + \frac{1}{\sqrt{5} + \sqrt{7}} + . . . . + . . . .\]  is


The sum of the series

\[\frac{1}{\log_2 4} + \frac{1}{\log_4 4} + \frac{1}{\log_8 4} + . . . . + \frac{1}{\log_2^n 4}\] is


If \[1 + \frac{1 + 2}{2} + \frac{1 + 2 + 3}{3} + . . . .\] to n terms is S, then S is equal to


Sum of n terms of the series \[\sqrt{2} + \sqrt{8} + \sqrt{18} + \sqrt{32} +\] .......  is


The sum of 10 terms of the series \[\sqrt{2} + \sqrt{6} + \sqrt{18} +\] .... is

 

If \[\sum^n_{r = 1} r = 55, \text{ find }  \sum^n_{r = 1} r^3\] .

 


If the sum of first n even natural numbers is equal to k times the sum of first n odd natural numbers, then write the value of k.


Find the natural number a for which ` sum_(k = 1)^n f(a + k)` = 16(2n – 1), where the function f satisfies f(x + y) = f(x) . f(y) for all natural numbers x, y and further f(1) = 2.


Find the sum of the series (33 – 23) + (53 – 43) + (73 – 63) + … to n terms


Find the sum of the series (33 – 23) + (53 – 43) + (73 – 63) + ... to 10 terms


If |x| < 1, |y| < 1 and x ≠ y, then the sum to infinity of the following series:

(x + y) + (x2 + xy + y2) + (x3 + x2y + xy2 + y3) + .... is ______.


A GP consists of an even number of terms. If the sum of all the terms is 5 times the sum of the terms occupying odd places, the common ratio will be equal to ______.


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×