Advertisements
Advertisements
Question
Find the sum to n terms of the series whose nth term is given by n (n + 1) (n + 4).
Solution
an = n (n + 1) (n + 4) = n(n2 + 5n + 4) = n3 + 5n2 + 4n
APPEARS IN
RELATED QUESTIONS
Find the sum to n terms of the series 1 × 2 + 2 × 3 + 3 × 4 + 4 × 5 + …
Find the sum to n terms of the series 52 + 62 + 72 + ... + 202
Find the sum to n terms of the series 3 × 8 + 6 × 11 + 9 × 14 +…
Find the sum to n terms of the series 12 + (12 + 22) + (12 + 22 + 32) + …
Find the sum to n terms of the series whose nth terms is given by (2n – 1)2
13 + 33 + 53 + 73 + ...
1.2.4 + 2.3.7 +3.4.10 + ...
3 × 12 + 5 ×22 + 7 × 32 + ...
Find the sum of the series whose nth term is:
(2n − 1)2
Find the 20th term and the sum of 20 terms of the series 2 × 4 + 4 × 6 + 6 × 8 + ...
Write the sum of the series 2 + 4 + 6 + 8 + ... + 2n.
1 + 3 + 6 + 10 + 15 + ...
1 + 4 + 13 + 40 + 121 + ...
4 + 6 + 9 + 13 + 18 + ...
2 + 4 + 7 + 11 + 16 + ...
\[\frac{1}{1 . 4} + \frac{1}{4 . 7} + \frac{1}{7 . 10} + . . .\]
\[\frac{1}{1 . 6} + \frac{1}{6 . 11} + \frac{1}{11 . 14} + \frac{1}{14 . 19} + . . . + \frac{1}{(5n - 4) (5n + 1)}\]
Write the sum of 20 terms of the series \[1 + \frac{1}{2}(1 + 2) + \frac{1}{3}(1 + 2 + 3) + . . . .\]
The sum of the series
\[\frac{1}{\log_2 4} + \frac{1}{\log_4 4} + \frac{1}{\log_8 4} + . . . . + \frac{1}{\log_2^n 4}\] is
Sum of n terms of the series \[\sqrt{2} + \sqrt{8} + \sqrt{18} + \sqrt{32} +\] ....... is
The sum of the series 12 + 32 + 52 + ... to n terms is
The sum of the series \[\frac{2}{3} + \frac{8}{9} + \frac{26}{27} + \frac{80}{81} +\] to n terms is
Write the sum to n terms of a series whose rth term is r + 2r.
2 + 5 + 10 + 17 + 26 + ...
Find the natural number a for which ` sum_(k = 1)^n f(a + k)` = 16(2n – 1), where the function f satisfies f(x + y) = f(x) . f(y) for all natural numbers x, y and further f(1) = 2.
Find the sum of the series (33 – 23) + (53 – 43) + (73 – 63) + ... to 10 terms
The sum of the series `1/(x + 1) + 2/(x^2 + 1) + 2^2/(x^4 + 1) + ...... + 2^100/(x^(2^100) + 1)` when x = 2 is ______.
If |x| < 1, |y| < 1 and x ≠ y, then the sum to infinity of the following series:
(x + y) + (x2 + xy + y2) + (x3 + x2y + xy2 + y3) + .... is ______.
The sum of all natural numbers 'n' such that 100 < n < 200 and H.C.F. (91, n) > 1 is ______.
The sum `sum_(k = 1)^20k 1/2^k` is equal to ______.