English

1 + 4 + 13 + 40 + 121 + ... - Mathematics

Advertisements
Advertisements

Question

1 + 4 + 13 + 40 + 121 + ...

Solution

Let \[T_n\] be the nth term and \[S_n\] be the sum to n terms of the given series.
Thus, we have:

\[S_n = 1 + 4 + 13 + 40 + 121 + . . . + T_{n - 1} + T_n\]   ...(1)

Equation (1) can be rewritten as:

\[S_n = 1 + 4 + 13 + 40 + 121 + . . . + T_{n - 1} + T_n\] ...(2)

On subtracting (2) from (1), we get:

\[S_n = 1 + 4 + 13 + 40 + 121 + . . . + T_{n - 1} + T_n \]

\[ S_n = 1 + 4 + 13 + 40 + 121 + . . . + T_{n - 1} + T_n \]

____________________________________________________

\[ 0 = 1 + \left[ 3 + 9 + 27 + 81 + . . . + \left( T_n - T_{n - 1} \right) \right] - T_n\]

The sequence of difference between successive terms is 3, 9, 27, 81,...
We observe that it is a GP with common ratio 3 and first term 3.
Thus, we have:

\[1 + \left[ \frac{3\left( 3^{n - 1} - 1 \right)}{3 - 1} \right] - T_n = 0\]

\[ \Rightarrow 1 + \left[ \frac{\left( 3^n - 3 \right)}{2} \right] - T_n = 0\]

\[ \Rightarrow \left( \frac{3^n}{2} - \frac{1}{2} \right) - T_n = 0\]

\[ \Rightarrow \left( \frac{3^n}{2} - \frac{1}{2} \right) = T_n\]

\[\because S_n = \sum^n_{k = 1} T_k \]

\[ \therefore S_n = \sum^n_{k = 1} \left( \frac{3^k}{2} - \frac{1}{2} \right)\]

\[ \Rightarrow S_n = \frac{1}{2} \sum^n_{k = 1} 3^k - \frac{1}{2} \sum^n_{k = 1} 1\]

\[ \Rightarrow S_n = \frac{1}{2}\left( 3 + 3^2 + 3^3 + 3^4 + 3^5 + . . . + 3^n \right) - \frac{n}{2}\]

\[ \Rightarrow S_n = \frac{1}{2}\left[ \frac{3\left( 3^n - 1 \right)}{2} \right] - \frac{n}{2}\]

\[ \Rightarrow S_n = \left( \frac{3^{n + 1} - 3}{4} \right) - \frac{n}{2}\]

\[ \Rightarrow S_n = \left( \frac{3^{n + 1} - 3 - 2n}{4} \right)\]

shaalaa.com
  Is there an error in this question or solution?
Chapter 21: Some special series - Exercise 21.2 [Page 18]

APPEARS IN

RD Sharma Mathematics [English] Class 11
Chapter 21 Some special series
Exercise 21.2 | Q 6 | Page 18

Video TutorialsVIEW ALL [1]

RELATED QUESTIONS

Find the sum to n terms of the series 3 × 12 + 5 × 22 + 7 × 32 + …


Find the sum to n terms of the series `1/(1xx2) + 1/(2xx3)+1/(3xx4)+ ...`


Find the sum to n terms of the series  52 + 62 + 72 + ... + 202


Find the sum to n terms of the series 3 × 8 + 6 × 11 + 9 × 14 +…


Find the sum to n terms of the series 12 + (12 + 22) + (12 + 22 + 32) + …


Find the sum to n terms of the series whose nth terms is given by n2 + 2n


Show that  `(1xx2^2 + 2xx3^2 + ...+nxx(n+1)^2)/(1^2 xx 2 + 2^2 xx3 + ... + n^2xx (n+1))` = `(3n + 5)/(3n + 1)`


1.2.4 + 2.3.7 +3.4.10 + ...


1 × 2 + 2 × 3 + 3 × 4 + 4 × 5 + ...


3 × 12 + 5 ×22 + 7 × 32 + ...


Find the sum of the series whose nth term is:

2n2 − 3n + 5


Find the sum of the series whose nth term is:

 2n3 + 3n2 − 1


Find the sum of the series whose nth term is:

n3 − 3n


Find the sum of the series whose nth term is:

(2n − 1)2


Write the sum of the series 2 + 4 + 6 + 8 + ... + 2n.


Write the sum of the series 12 − 22 + 32 − 42 + 52 − 62 + ... + (2n − 1)2 − (2n)2.


3 + 7 + 14 + 24 + 37 + ...


2 + 4 + 7 + 11 + 16 + ...


\[\frac{1}{1 . 6} + \frac{1}{6 . 11} + \frac{1}{11 . 14} + \frac{1}{14 . 19} + . . . + \frac{1}{(5n - 4) (5n + 1)}\]


The value of  \[\sum^n_{r = 1} \left\{ (2r - 1) a + \frac{1}{b^r} \right\}\] is equal to


If ∑ n = 210, then ∑ n2 =


If Sn = \[\sum^n_{r = 1} \frac{1 + 2 + 2^2 + . . . \text { Sum to r terms }}{2^r}\], then Sn is equal to


Write the sum of 20 terms of the series \[1 + \frac{1}{2}(1 + 2) + \frac{1}{3}(1 + 2 + 3) + . . . .\]


Write the 50th term of the series 2 + 3 + 6 + 11 + 18 + ...


The sum to n terms of the series \[\frac{1}{\sqrt{1} + \sqrt{3}} + \frac{1}{\sqrt{3} + \sqrt{5}} + \frac{1}{\sqrt{5} + \sqrt{7}} + . . . . + . . . .\]  is


If \[1 + \frac{1 + 2}{2} + \frac{1 + 2 + 3}{3} + . . . .\] to n terms is S, then S is equal to


The sum of the series 12 + 32 + 52 + ... to n terms is 


Write the sum to n terms of a series whose rth term is r + 2r.

 

If \[\sum^n_{r = 1} r = 55, \text{ find }  \sum^n_{r = 1} r^3\] .

 


Find the natural number a for which ` sum_(k = 1)^n f(a + k)` = 16(2n – 1), where the function f satisfies f(x + y) = f(x) . f(y) for all natural numbers x, y and further f(1) = 2.


Let Sn denote the sum of the cubes of the first n natural numbers and sn denote the sum of the first n natural numbers. Then `sum_(r = 1)^n S_r/s_r` equals ______.


The sum of the series `1/(x + 1) + 2/(x^2 + 1) + 2^2/(x^4 + 1) + ...... + 2^100/(x^(2^100) + 1)` when x = 2 is ______.


If |x| < 1, |y| < 1 and x ≠ y, then the sum to infinity of the following series:

(x + y) + (x2 + xy + y2) + (x3 + x2y + xy2 + y3) + .... is ______.


The sum of all natural numbers 'n' such that 100 < n < 200 and H.C.F. (91, n) > 1 is ______.


Let Sn(x) = `log_a  1/2 x + log_a  1/3 x + log_a  1/6 x + log_a  1/11 x  +  log_a  1/18 x + log_a  1/27x  + ` ...... up to n-terms, where a > 1. If S24(x) = 1093 and S12(2x) = 265, then value of a is equal to ______.


The sum `sum_(k = 1)^20k 1/2^k` is equal to ______.


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×