English

The Value of N ∑ R = 1 { ( 2 R − 1 ) a + 1 B R } is Equal to - Mathematics

Advertisements
Advertisements

Question

The value of  \[\sum^n_{r = 1} \left\{ (2r - 1) a + \frac{1}{b^r} \right\}\] is equal to

Options

  • \[a n^2 + \frac{b^{n - 1} - 1}{b^{n - 1} (b - 1)}\]

  • \[a n^2 + \frac{b^n - 1}{b^n (b - 1)}\]

  • \[a n^3 + \frac{b^{n - 1} - 1}{b^n (b - 1)}\]

  • none of these

MCQ

Solution

\[a n^2 + \frac{b^n - 1}{b^n (b - 1)}\]

We have:

\[\sum^n_{r = 1} \left\{ (2r - 1) a + \frac{1}{b^r} \right\}\]

\[ = \sum^n_{r = 1} \left\{ 2ra - a + \frac{1}{b^r} \right\}\]

\[ = \sum^n_{r = 1} 2ar - \sum^n_{r = 1} a + \sum^n_{r = 1} \frac{1}{b^r}\]

\[ = an\left( n + 1 \right) - an + \frac{\left( 1 - b^n \right)}{\left( 1 - b \right) b^n}\]

\[ = a n^2 + \frac{\left( b^n - 1 \right)}{\left( b - 1 \right) b^n}\]

shaalaa.com
  Is there an error in this question or solution?
Chapter 21: Some special series - Exercise 21.4 [Page 19]

APPEARS IN

RD Sharma Mathematics [English] Class 11
Chapter 21 Some special series
Exercise 21.4 | Q 3 | Page 19

Video TutorialsVIEW ALL [1]

RELATED QUESTIONS

Find the sum to n terms of the series 1 × 2 + 2 × 3 + 3 × 4 + 4 × 5 + …


Find the sum to n terms of the series `1/(1xx2) + 1/(2xx3)+1/(3xx4)+ ...`


Find the sum to n terms of the series  52 + 62 + 72 + ... + 202


Find the sum to n terms of the series 3 × 8 + 6 × 11 + 9 × 14 +…


Find the sum to n terms of the series 12 + (12 + 22) + (12 + 22 + 32) + …


Find the sum to n terms of the series whose nth terms is given by n2 + 2n


Find the sum to n terms of the series whose nth terms is given by (2n – 1)2


Show that  `(1xx2^2 + 2xx3^2 + ...+nxx(n+1)^2)/(1^2 xx 2 + 2^2 xx3 + ... + n^2xx (n+1))` = `(3n + 5)/(3n + 1)`


22 + 42 + 62 + 82 + ...


1.2.5 + 2.3.6 + 3.4.7 + ...


Find the sum of the series whose nth term is:

n3 − 3n


Find the sum of the series whose nth term is:

(2n − 1)2


Find the 20th term and the sum of 20 terms of the series 2 × 4 + 4 × 6 + 6 × 8 + ...


Write the sum of the series 2 + 4 + 6 + 8 + ... + 2n.


1 + 4 + 13 + 40 + 121 + ...


4 + 6 + 9 + 13 + 18 + ...


\[\frac{1}{1 . 6} + \frac{1}{6 . 11} + \frac{1}{11 . 14} + \frac{1}{14 . 19} + . . . + \frac{1}{(5n - 4) (5n + 1)}\]


If ∑ n = 210, then ∑ n2 =


Write the sum of 20 terms of the series \[1 + \frac{1}{2}(1 + 2) + \frac{1}{3}(1 + 2 + 3) + . . . .\]


Write the 50th term of the series 2 + 3 + 6 + 11 + 18 + ...


The sum of the series

\[\frac{1}{\log_2 4} + \frac{1}{\log_4 4} + \frac{1}{\log_8 4} + . . . . + \frac{1}{\log_2^n 4}\] is


If \[1 + \frac{1 + 2}{2} + \frac{1 + 2 + 3}{3} + . . . .\] to n terms is S, then S is equal to


Write the sum to n terms of a series whose rth term is r + 2r.

 

Find the natural number a for which ` sum_(k = 1)^n f(a + k)` = 16(2n – 1), where the function f satisfies f(x + y) = f(x) . f(y) for all natural numbers x, y and further f(1) = 2.


Find the sum of the series (33 – 23) + (53 – 43) + (73 – 63) + … to n terms


The sum of the series `1/(x + 1) + 2/(x^2 + 1) + 2^2/(x^4 + 1) + ...... + 2^100/(x^(2^100) + 1)` when x = 2 is ______.


If |x| < 1, |y| < 1 and x ≠ y, then the sum to infinity of the following series:

(x + y) + (x2 + xy + y2) + (x3 + x2y + xy2 + y3) + .... is ______.


The sum of all natural numbers 'n' such that 100 < n < 200 and H.C.F. (91, n) > 1 is ______.


Let Sn(x) = `log_a  1/2 x + log_a  1/3 x + log_a  1/6 x + log_a  1/11 x  +  log_a  1/18 x + log_a  1/27x  + ` ...... up to n-terms, where a > 1. If S24(x) = 1093 and S12(2x) = 265, then value of a is equal to ______.


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×