English

Find the natural number a for which ∑k=1nf(a+k) = 16(2n – 1), where the function f satisfies f(x + y) = f(x) . f(y) for all natural numbers x, y and further f(1) = 2. - Mathematics

Advertisements
Advertisements

Question

Find the natural number a for which ` sum_(k = 1)^n f(a + k)` = 16(2n – 1), where the function f satisfies f(x + y) = f(x) . f(y) for all natural numbers x, y and further f(1) = 2.

Sum

Solution

Given that f(x + y) = f(x) . f(y) and f(1) = 2

Therefore, f(2) = f(1 + 1) = f(1) . f(1) = 22

f(3) = f(1 + 2) = f(1) . f(2) = 23

f(4) = f(1 + 3) = f(1) . f(3) = 24

And so on. Continuing the process, we obtain

f(k) = 2k and f(a) = 2a

Hence `sum_(k = 1)^n f(a + k) = sum_(k = 1)^n f(a) * f(k)`

= `f(a) sum_(k = 1)^n f(k)`

= 2a (21 + 22 + 23 + ... + 2n)

= `2^n {(2*(2^n - 1))/(2 - 1)}`

= `2^(n + 1) (2^n - 1)`  ....(1)

But, we are given `sum_(k = 1)^n f(a + k)` = 16(2n – 1)

`""^(2^(n + 1)) (2^n - 1)` = 16(2n – 1)

⇒ 2a+1 = 24 

⇒ a + 1 = 4

⇒ a = 3

shaalaa.com
  Is there an error in this question or solution?
Chapter 9: Sequences and Series - Solved Examples [Page 157]

APPEARS IN

NCERT Exemplar Mathematics [English] Class 11
Chapter 9 Sequences and Series
Solved Examples | Q 13 | Page 157

Video TutorialsVIEW ALL [1]

RELATED QUESTIONS

Find the sum to n terms of the series 3 × 12 + 5 × 22 + 7 × 32 + …


Find the sum to n terms of the series 12 + (12 + 22) + (12 + 22 + 32) + …


Find the sum to n terms of the series whose nth term is given by n (n + 1) (n + 4).


Find the sum to n terms of the series whose nth terms is given by n2 + 2n


1+ 3+ 53 + 73 + ...


1.2.4 + 2.3.7 +3.4.10 + ...


1 + (1 + 2) + (1 + 2 + 3) + (1 + 2 + 3 + 4) + ...


Find the sum of the series whose nth term is:

n3 − 3n


Find the sum of the series whose nth term is:

n (n + 1) (n + 4)


Find the 20th term and the sum of 20 terms of the series 2 × 4 + 4 × 6 + 6 × 8 + ...


Write the sum of the series 2 + 4 + 6 + 8 + ... + 2n.


1 + 3 + 7 + 13 + 21 + ...


3 + 7 + 14 + 24 + 37 + ...


4 + 6 + 9 + 13 + 18 + ...


\[\frac{1}{1 . 4} + \frac{1}{4 . 7} + \frac{1}{7 . 10} + . . .\]


Write the sum of 20 terms of the series \[1 + \frac{1}{2}(1 + 2) + \frac{1}{3}(1 + 2 + 3) + . . . .\]


Let Sn denote the sum of the cubes of first n natural numbers and sn denote the sum of first n natural numbers. Then, write the value of \[\sum^n_{r = 1} \frac{S_r}{s_r}\] .


Sum of n terms of the series \[\sqrt{2} + \sqrt{8} + \sqrt{18} + \sqrt{32} +\] .......  is


The sum of 10 terms of the series \[\sqrt{2} + \sqrt{6} + \sqrt{18} +\] .... is

 

The sum of the series 12 + 32 + 52 + ... to n terms is 


Let Sn denote the sum of the cubes of the first n natural numbers and sn denote the sum of the first n natural numbers. Then `sum_(r = 1)^n S_r/s_r` equals ______.


The sum of the series `1/(x + 1) + 2/(x^2 + 1) + 2^2/(x^4 + 1) + ...... + 2^100/(x^(2^100) + 1)` when x = 2 is ______.


If |x| < 1, |y| < 1 and x ≠ y, then the sum to infinity of the following series:

(x + y) + (x2 + xy + y2) + (x3 + x2y + xy2 + y3) + .... is ______.


A GP consists of an even number of terms. If the sum of all the terms is 5 times the sum of the terms occupying odd places, the common ratio will be equal to ______.


Let Sn(x) = `log_a  1/2 x + log_a  1/3 x + log_a  1/6 x + log_a  1/11 x  +  log_a  1/18 x + log_a  1/27x  + ` ...... up to n-terms, where a > 1. If S24(x) = 1093 and S12(2x) = 265, then value of a is equal to ______.


The sum `sum_(k = 1)^20k 1/2^k` is equal to ______.


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×