English

Let Sn denote the sum of the cubes of the first n natural numbers and sn denote the sum of the first n natural numbers. Then ∑r=1nSrsr equals ______. - Mathematics

Advertisements
Advertisements

Question

Let Sn denote the sum of the cubes of the first n natural numbers and sn denote the sum of the first n natural numbers. Then `sum_(r = 1)^n S_r/s_r` equals ______.

Options

  • `(n(n + 1)(n + 2))/6`

  • `(n(n + 1))/2`

  • `(n^2 + 3n + 2)/2`

  • None of these

MCQ
Fill in the Blanks

Solution

Let Sn denote the sum of the cubes of the first n natural numbers and sn denote the sum of the first n natural numbers. Then `sum_(r = 1)^n S_r/s_r` equals `(n(n + 1)(n + 2))/6`.

Explanation:

Given that `sum_(i = 1)^n S_r/s_r = S_1/s_1 + S_2/s_2 + S_3/s_3 + ... + S_n/s_n`

Let Tn be the nth term of the above series

∴ Tn = `S_n/s_n`

= `([(n(n + 1))/2]^2)/((n(n + 1))/2)`

= `(n(n + 1))/2`

= `(n^2 + n)/2`

Now sum of the given series

`sum"T"_"n" = 1/2 sum [n^2 + n]`

= `1/2 [sum n^2 + sum n]`

= `1/2 [(n(n + 1)(2n + 1))/6 + (n(n + 1))/2]`

= `1/2 * (n(n + 1))/2 [(2n + 1)/3 + 1]`

= `(n(n + 1))/4 [(2n + 1 + 3)/3]`

= `(n(n + 1))/4 * ((2n + 4))/3`

= `(n(n + 1)(n + 2))/6`

shaalaa.com
  Is there an error in this question or solution?
Chapter 9: Sequences and Series - Exercise [Page 163]

APPEARS IN

NCERT Exemplar Mathematics [English] Class 11
Chapter 9 Sequences and Series
Exercise | Q 24 | Page 163

Video TutorialsVIEW ALL [1]

RELATED QUESTIONS

Find the sum to n terms of the series  52 + 62 + 72 + ... + 202


Find the sum to n terms of the series whose nth terms is given by (2n – 1)2


1+ 3+ 53 + 73 + ...


22 + 42 + 62 + 82 + ...


1.2.5 + 2.3.6 + 3.4.7 + ...


1.2.4 + 2.3.7 +3.4.10 + ...


1 + (1 + 2) + (1 + 2 + 3) + (1 + 2 + 3 + 4) + ...


Find the sum of the series whose nth term is:

2n2 − 3n + 5


Find the sum of the series whose nth term is:

 2n3 + 3n2 − 1


Find the sum of the series whose nth term is:

(2n − 1)2


Write the sum of the series 12 − 22 + 32 − 42 + 52 − 62 + ... + (2n − 1)2 − (2n)2.


1 + 3 + 6 + 10 + 15 + ...


\[\frac{1}{1 . 4} + \frac{1}{4 . 7} + \frac{1}{7 . 10} + . . .\]


Write the sum of 20 terms of the series \[1 + \frac{1}{2}(1 + 2) + \frac{1}{3}(1 + 2 + 3) + . . . .\]


Let Sn denote the sum of the cubes of first n natural numbers and sn denote the sum of first n natural numbers. Then, write the value of \[\sum^n_{r = 1} \frac{S_r}{s_r}\] .


3 + 5 + 9 + 15 + 23 + ...

 

Find the natural number a for which ` sum_(k = 1)^n f(a + k)` = 16(2n – 1), where the function f satisfies f(x + y) = f(x) . f(y) for all natural numbers x, y and further f(1) = 2.


Find the sum of the series (33 – 23) + (53 – 43) + (73 – 63) + … to n terms


Find the sum of the series (33 – 23) + (53 – 43) + (73 – 63) + ... to 10 terms


The sum of the series `1/(x + 1) + 2/(x^2 + 1) + 2^2/(x^4 + 1) + ...... + 2^100/(x^(2^100) + 1)` when x = 2 is ______.


The sum of all natural numbers 'n' such that 100 < n < 200 and H.C.F. (91, n) > 1 is ______.


A GP consists of an even number of terms. If the sum of all the terms is 5 times the sum of the terms occupying odd places, the common ratio will be equal to ______.


The sum `sum_(k = 1)^20k 1/2^k` is equal to ______.


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×