Advertisements
Advertisements
प्रश्न
Let Sn denote the sum of the cubes of the first n natural numbers and sn denote the sum of the first n natural numbers. Then `sum_(r = 1)^n S_r/s_r` equals ______.
पर्याय
`(n(n + 1)(n + 2))/6`
`(n(n + 1))/2`
`(n^2 + 3n + 2)/2`
None of these
उत्तर
Let Sn denote the sum of the cubes of the first n natural numbers and sn denote the sum of the first n natural numbers. Then `sum_(r = 1)^n S_r/s_r` equals `(n(n + 1)(n + 2))/6`.
Explanation:
Given that `sum_(i = 1)^n S_r/s_r = S_1/s_1 + S_2/s_2 + S_3/s_3 + ... + S_n/s_n`
Let Tn be the nth term of the above series
∴ Tn = `S_n/s_n`
= `([(n(n + 1))/2]^2)/((n(n + 1))/2)`
= `(n(n + 1))/2`
= `(n^2 + n)/2`
Now sum of the given series
`sum"T"_"n" = 1/2 sum [n^2 + n]`
= `1/2 [sum n^2 + sum n]`
= `1/2 [(n(n + 1)(2n + 1))/6 + (n(n + 1))/2]`
= `1/2 * (n(n + 1))/2 [(2n + 1)/3 + 1]`
= `(n(n + 1))/4 [(2n + 1 + 3)/3]`
= `(n(n + 1))/4 * ((2n + 4))/3`
= `(n(n + 1)(n + 2))/6`
APPEARS IN
संबंधित प्रश्न
Find the sum to n terms of the series 1 × 2 + 2 × 3 + 3 × 4 + 4 × 5 + …
Find the sum to n terms of the series `1/(1xx2) + 1/(2xx3)+1/(3xx4)+ ...`
Find the sum to n terms of the series 52 + 62 + 72 + ... + 202
Find the sum to n terms of the series 3 × 8 + 6 × 11 + 9 × 14 +…
Show that `(1xx2^2 + 2xx3^2 + ...+nxx(n+1)^2)/(1^2 xx 2 + 2^2 xx3 + ... + n^2xx (n+1))` = `(3n + 5)/(3n + 1)`
22 + 42 + 62 + 82 + ...
3 × 12 + 5 ×22 + 7 × 32 + ...
Find the sum of the series whose nth term is:
2n2 − 3n + 5
Find the sum of the series whose nth term is:
n3 − 3n
Find the sum of the series whose nth term is:
(2n − 1)2
1 + 3 + 7 + 13 + 21 + ...
2 + 4 + 7 + 11 + 16 + ...
\[\frac{1}{1 . 6} + \frac{1}{6 . 11} + \frac{1}{11 . 14} + \frac{1}{14 . 19} + . . . + \frac{1}{(5n - 4) (5n + 1)}\]
The value of \[\sum^n_{r = 1} \left\{ (2r - 1) a + \frac{1}{b^r} \right\}\] is equal to
If Sn = \[\sum^n_{r = 1} \frac{1 + 2 + 2^2 + . . . \text { Sum to r terms }}{2^r}\], then Sn is equal to
Write the sum of 20 terms of the series \[1 + \frac{1}{2}(1 + 2) + \frac{1}{3}(1 + 2 + 3) + . . . .\]
Write the 50th term of the series 2 + 3 + 6 + 11 + 18 + ...
If \[1 + \frac{1 + 2}{2} + \frac{1 + 2 + 3}{3} + . . . .\] to n terms is S, then S is equal to
Sum of n terms of the series \[\sqrt{2} + \sqrt{8} + \sqrt{18} + \sqrt{32} +\] ....... is
The sum of the series 12 + 32 + 52 + ... to n terms is
If \[\sum^n_{r = 1} r = 55, \text{ find } \sum^n_{r = 1} r^3\] .
Find the natural number a for which ` sum_(k = 1)^n f(a + k)` = 16(2n – 1), where the function f satisfies f(x + y) = f(x) . f(y) for all natural numbers x, y and further f(1) = 2.
The sum of the series `1/(x + 1) + 2/(x^2 + 1) + 2^2/(x^4 + 1) + ...... + 2^100/(x^(2^100) + 1)` when x = 2 is ______.
A GP consists of an even number of terms. If the sum of all the terms is 5 times the sum of the terms occupying odd places, the common ratio will be equal to ______.
Let Sn(x) = `log_a 1/2 x + log_a 1/3 x + log_a 1/6 x + log_a 1/11 x + log_a 1/18 x + log_a 1/27x + ` ...... up to n-terms, where a > 1. If S24(x) = 1093 and S12(2x) = 265, then value of a is equal to ______.