Advertisements
Advertisements
प्रश्न
Find the sum of the series whose nth term is:
(2n − 1)2
उत्तर
Let \[T_n\] be the nth term of the given series.
Thus, we have:
\[T_n = \left( 2n - 1 \right)^2\]
Let \[S_n\] be the sum of n terms of the given series.
Now,
\[S_n = \sum^n_{k = 1} T_k\]
\[\Rightarrow S_n = \sum^n_{k = 1} \left( 2k - 1 \right)^2 \]
\[ \Rightarrow S_n = \sum^n_{k = 1} \left( 4 k^2 + 1 - 4k \right)\]
\[ \Rightarrow S_n = {4\sum}^n_{k = 1} k^2 + \sum 1^n_{k = 1} - 4 \sum^n_{k = 1} k \]
\[ \Rightarrow S_n = \frac{4n\left( n + 1 \right)\left( 2n + 1 \right)}{6} + n - \frac{4n\left( n + 1 \right)}{2}\]
\[ \Rightarrow S_n = \frac{n\left( n + 1 \right)}{2}\left[ \frac{4\left( 2n + 1 \right)}{3} - 4 \right] + n\]
\[ \Rightarrow S_n = \frac{n\left( n + 1 \right)}{2}\left( \frac{8n + 4 - 12}{3} \right) + n\]
\[ \Rightarrow S_n = \frac{n\left( n + 1 \right)}{2}\left( \frac{8n - 8}{3} \right) + n\]
\[ \Rightarrow S_n = 4n\left( n + 1 \right)\left( \frac{n - 1}{3} \right) + n\]
\[ \Rightarrow S_n = \frac{n\left( 4n + 4 \right)\left( n - 1 \right) + 3n}{3}\]
\[ \Rightarrow S_n = \frac{n}{3}\left( 4 n^2 + 4n - 4n - 4 + 3 \right)\]
\[ \Rightarrow S_n = \frac{n}{3}\left( 4 n^2 - 1 \right)\]
\[ \Rightarrow S_n = \frac{n}{3}\left( 2n - 1 \right)\left( 2n + 1 \right)\]
APPEARS IN
संबंधित प्रश्न
Find the sum to n terms of the series 1 × 2 + 2 × 3 + 3 × 4 + 4 × 5 + …
Find the sum to n terms of the series 1 × 2 × 3 + 2 × 3 × 4 + 3 × 4 × 5 + …
Find the sum to n terms of the series 3 × 12 + 5 × 22 + 7 × 32 + …
Find the sum to n terms of the series `1/(1xx2) + 1/(2xx3)+1/(3xx4)+ ...`
Find the sum to n terms of the series 3 × 8 + 6 × 11 + 9 × 14 +…
Find the sum to n terms of the series whose nth terms is given by (2n – 1)2
13 + 33 + 53 + 73 + ...
22 + 42 + 62 + 82 + ...
1.2.5 + 2.3.6 + 3.4.7 + ...
1.2.4 + 2.3.7 +3.4.10 + ...
1 + (1 + 2) + (1 + 2 + 3) + (1 + 2 + 3 + 4) + ...
1 × 2 + 2 × 3 + 3 × 4 + 4 × 5 + ...
3 × 12 + 5 ×22 + 7 × 32 + ...
Find the sum of the series whose nth term is:
2n2 − 3n + 5
Find the sum of the series whose nth term is:
n3 − 3n
Find the sum of the series whose nth term is:
n (n + 1) (n + 4)
Write the sum of the series 2 + 4 + 6 + 8 + ... + 2n.
Write the sum of the series 12 − 22 + 32 − 42 + 52 − 62 + ... + (2n − 1)2 − (2n)2.
1 + 4 + 13 + 40 + 121 + ...
2 + 4 + 7 + 11 + 16 + ...
\[\frac{1}{1 . 6} + \frac{1}{6 . 11} + \frac{1}{11 . 14} + \frac{1}{14 . 19} + . . . + \frac{1}{(5n - 4) (5n + 1)}\]
If ∑ n = 210, then ∑ n2 =
Write the 50th term of the series 2 + 3 + 6 + 11 + 18 + ...
The sum to n terms of the series \[\frac{1}{\sqrt{1} + \sqrt{3}} + \frac{1}{\sqrt{3} + \sqrt{5}} + \frac{1}{\sqrt{5} + \sqrt{7}} + . . . . + . . . .\] is
If \[1 + \frac{1 + 2}{2} + \frac{1 + 2 + 3}{3} + . . . .\] to n terms is S, then S is equal to
Sum of n terms of the series \[\sqrt{2} + \sqrt{8} + \sqrt{18} + \sqrt{32} +\] ....... is
The sum of 10 terms of the series \[\sqrt{2} + \sqrt{6} + \sqrt{18} +\] .... is
The sum of the series 12 + 32 + 52 + ... to n terms is
The sum of the series \[\frac{2}{3} + \frac{8}{9} + \frac{26}{27} + \frac{80}{81} +\] to n terms is
3 + 5 + 9 + 15 + 23 + ...
Let Sn denote the sum of the cubes of the first n natural numbers and sn denote the sum of the first n natural numbers. Then `sum_(r = 1)^n S_r/s_r` equals ______.
Let Sn(x) = `log_a 1/2 x + log_a 1/3 x + log_a 1/6 x + log_a 1/11 x + log_a 1/18 x + log_a 1/27x + ` ...... up to n-terms, where a > 1. If S24(x) = 1093 and S12(2x) = 265, then value of a is equal to ______.