Advertisements
Advertisements
प्रश्न
1 + 4 + 13 + 40 + 121 + ...
उत्तर
Let \[T_n\] be the nth term and \[S_n\] be the sum to n terms of the given series.
Thus, we have:
\[S_n = 1 + 4 + 13 + 40 + 121 + . . . + T_{n - 1} + T_n\] ...(1)
Equation (1) can be rewritten as:
\[S_n = 1 + 4 + 13 + 40 + 121 + . . . + T_{n - 1} + T_n\] ...(2)
On subtracting (2) from (1), we get:
\[S_n = 1 + 4 + 13 + 40 + 121 + . . . + T_{n - 1} + T_n \]
\[ S_n = 1 + 4 + 13 + 40 + 121 + . . . + T_{n - 1} + T_n \]
____________________________________________________
\[ 0 = 1 + \left[ 3 + 9 + 27 + 81 + . . . + \left( T_n - T_{n - 1} \right) \right] - T_n\]
The sequence of difference between successive terms is 3, 9, 27, 81,...
We observe that it is a GP with common ratio 3 and first term 3.
Thus, we have:
\[1 + \left[ \frac{3\left( 3^{n - 1} - 1 \right)}{3 - 1} \right] - T_n = 0\]
\[ \Rightarrow 1 + \left[ \frac{\left( 3^n - 3 \right)}{2} \right] - T_n = 0\]
\[ \Rightarrow \left( \frac{3^n}{2} - \frac{1}{2} \right) - T_n = 0\]
\[ \Rightarrow \left( \frac{3^n}{2} - \frac{1}{2} \right) = T_n\]
\[\because S_n = \sum^n_{k = 1} T_k \]
\[ \therefore S_n = \sum^n_{k = 1} \left( \frac{3^k}{2} - \frac{1}{2} \right)\]
\[ \Rightarrow S_n = \frac{1}{2} \sum^n_{k = 1} 3^k - \frac{1}{2} \sum^n_{k = 1} 1\]
\[ \Rightarrow S_n = \frac{1}{2}\left( 3 + 3^2 + 3^3 + 3^4 + 3^5 + . . . + 3^n \right) - \frac{n}{2}\]
\[ \Rightarrow S_n = \frac{1}{2}\left[ \frac{3\left( 3^n - 1 \right)}{2} \right] - \frac{n}{2}\]
\[ \Rightarrow S_n = \left( \frac{3^{n + 1} - 3}{4} \right) - \frac{n}{2}\]
\[ \Rightarrow S_n = \left( \frac{3^{n + 1} - 3 - 2n}{4} \right)\]
APPEARS IN
संबंधित प्रश्न
Find the sum to n terms of the series 1 × 2 + 2 × 3 + 3 × 4 + 4 × 5 + …
Find the sum to n terms of the series 1 × 2 × 3 + 2 × 3 × 4 + 3 × 4 × 5 + …
Find the sum to n terms of the series 3 × 12 + 5 × 22 + 7 × 32 + …
Find the sum to n terms of the series whose nth term is given by n (n + 1) (n + 4).
Find the sum to n terms of the series whose nth terms is given by n2 + 2n
13 + 33 + 53 + 73 + ...
22 + 42 + 62 + 82 + ...
1 + (1 + 2) + (1 + 2 + 3) + (1 + 2 + 3 + 4) + ...
3 × 12 + 5 ×22 + 7 × 32 + ...
Find the sum of the series whose nth term is:
n3 − 3n
Find the sum of the series whose nth term is:
n (n + 1) (n + 4)
Find the sum of the series whose nth term is:
(2n − 1)2
Find the 20th term and the sum of 20 terms of the series 2 × 4 + 4 × 6 + 6 × 8 + ...
3 + 7 + 14 + 24 + 37 + ...
1 + 3 + 6 + 10 + 15 + ...
4 + 6 + 9 + 13 + 18 + ...
2 + 4 + 7 + 11 + 16 + ...
\[\frac{1}{1 . 6} + \frac{1}{6 . 11} + \frac{1}{11 . 14} + \frac{1}{14 . 19} + . . . + \frac{1}{(5n - 4) (5n + 1)}\]
The value of \[\sum^n_{r = 1} \left\{ (2r - 1) a + \frac{1}{b^r} \right\}\] is equal to
If ∑ n = 210, then ∑ n2 =
Write the sum of 20 terms of the series \[1 + \frac{1}{2}(1 + 2) + \frac{1}{3}(1 + 2 + 3) + . . . .\]
If \[1 + \frac{1 + 2}{2} + \frac{1 + 2 + 3}{3} + . . . .\] to n terms is S, then S is equal to
Sum of n terms of the series \[\sqrt{2} + \sqrt{8} + \sqrt{18} + \sqrt{32} +\] ....... is
Write the sum to n terms of a series whose rth term is r + 2r.
If the sum of first n even natural numbers is equal to k times the sum of first n odd natural numbers, then write the value of k.
3 + 5 + 9 + 15 + 23 + ...
2 + 5 + 10 + 17 + 26 + ...
Find the sum of the series (33 – 23) + (53 – 43) + (73 – 63) + … to n terms
Find the sum of the series (33 – 23) + (53 – 43) + (73 – 63) + ... to 10 terms
The sum of the series `1/(x + 1) + 2/(x^2 + 1) + 2^2/(x^4 + 1) + ...... + 2^100/(x^(2^100) + 1)` when x = 2 is ______.
If |x| < 1, |y| < 1 and x ≠ y, then the sum to infinity of the following series:
(x + y) + (x2 + xy + y2) + (x3 + x2y + xy2 + y3) + .... is ______.
The sum of all natural numbers 'n' such that 100 < n < 200 and H.C.F. (91, n) > 1 is ______.
A GP consists of an even number of terms. If the sum of all the terms is 5 times the sum of the terms occupying odd places, the common ratio will be equal to ______.