मराठी

3 + 7 + 14 + 24 + 37 + ... - Mathematics

Advertisements
Advertisements

प्रश्न

3 + 7 + 14 + 24 + 37 + ...

उत्तर

Let \[T_n\] be the nth term and \[S_n\]  be the sum of n terms of the given series.
Thus, we have: \[S_n = 3 + 7 + 14 + 24 + 37 + . . . + T_{n - 1} + T_n\]  ...(1)

Equation (1) can be rewritten as:

\[S_n = 3 + 7 + 14 + 24 + 37 + . . . + T_{n - 1} + T_n\] ...(2)

On subtracting (2) from (1), we get:

\[S_n = 3 + 7 + 14 + 24 + 37 + . . . + T_{n - 1} + T_n \]

\[ S_n = 3 + 7 + 14 + 24 + 37 + . . . + T_{n - 1} + T_n \]

______________________________________________________

\[0 = 3 + \left[ 4 + 7 + 10 + 13 + . . . + \left( T_n - T_{n - 1} \right) \right] - T_n\]

The sequence of difference of successive terms is 4, 7, 10, 13,...
We observe that it is an AP with common difference 3 and first term 4.
Thus, we have:

\[3 + \left[ \frac{\left( n - 1 \right)}{2}\left\{ 8 + \left( n - 2 \right)3 \right\} \right] - T_n = 0\]

\[ \Rightarrow 3 + \left[ \frac{\left( n - 1 \right)}{2}\left( 3n + 2 \right) \right] - T_n = 0\]

\[ \Rightarrow \left[ \frac{3 n^2 - n + 4}{2} \right] = T_n \]

\[ \Rightarrow \left[ \frac{3}{2} n^2 - \frac{n}{2} + 2 \right] = T_n\]

Now,

\[\because S_n = \sum^n_{k = 1} T_k \]

\[ \therefore S_n = \sum^n_{k = 1} \left( \frac{3}{2} k^2 - \frac{k}{2} + 2 \right) \]

\[ \Rightarrow S_n = \frac{3}{2} \sum^n_{k = 1} k^2 + \sum^n_{k = 1} 2 - \frac{1}{2} \sum^n_{k = 1} k\]

\[ \Rightarrow S_n = \frac{n\left( n + 1 \right)\left( 2n + 1 \right)}{4} + 2n - \frac{n\left( n + 1 \right)}{4}\]

\[ \Rightarrow S_n = \frac{n\left( n + 1 \right)\left( 2n \right) + 8n}{4}\]

\[ \Rightarrow S_n = \frac{\left( n + 1 \right)\left( 2 n^2 \right) + 8n}{4}\]

\[ \Rightarrow S_n = \frac{n}{2}\left[ n\left( n + 1 \right) + 4 \right]\]

\[ \Rightarrow S_n = \frac{n}{2}\left[ n^2 + n + 4 \right]\]

shaalaa.com
  या प्रश्नात किंवा उत्तरात काही त्रुटी आहे का?
पाठ 21: Some special series - Exercise 21.2 [पृष्ठ १८]

APPEARS IN

आरडी शर्मा Mathematics [English] Class 11
पाठ 21 Some special series
Exercise 21.2 | Q 4 | पृष्ठ १८

व्हिडिओ ट्यूटोरियलVIEW ALL [1]

संबंधित प्रश्‍न

Find the sum to n terms of the series 1 × 2 + 2 × 3 + 3 × 4 + 4 × 5 + …


Find the sum to n terms of the series 1 × 2 × 3 + 2 × 3 × 4 + 3 × 4 × 5 + …


Find the sum to n terms of the series `1/(1xx2) + 1/(2xx3)+1/(3xx4)+ ...`


Find the sum to n terms of the series  52 + 62 + 72 + ... + 202


Find the sum to n terms of the series 3 × 8 + 6 × 11 + 9 × 14 +…


Find the sum to n terms of the series 12 + (12 + 22) + (12 + 22 + 32) + …


Find the sum to n terms of the series whose nth terms is given by n2 + 2n


Find the sum to n terms of the series whose nth terms is given by (2n – 1)2


Show that  `(1xx2^2 + 2xx3^2 + ...+nxx(n+1)^2)/(1^2 xx 2 + 2^2 xx3 + ... + n^2xx (n+1))` = `(3n + 5)/(3n + 1)`


1.2.4 + 2.3.7 +3.4.10 + ...


1 × 2 + 2 × 3 + 3 × 4 + 4 × 5 + ...


3 × 12 + 5 ×22 + 7 × 32 + ...


Find the sum of the series whose nth term is:

2n2 − 3n + 5


1 + 4 + 13 + 40 + 121 + ...


4 + 6 + 9 + 13 + 18 + ...


If ∑ n = 210, then ∑ n2 =


Write the sum of 20 terms of the series \[1 + \frac{1}{2}(1 + 2) + \frac{1}{3}(1 + 2 + 3) + . . . .\]


Let Sn denote the sum of the cubes of first n natural numbers and sn denote the sum of first n natural numbers. Then, write the value of \[\sum^n_{r = 1} \frac{S_r}{s_r}\] .


The sum of the series

\[\frac{1}{\log_2 4} + \frac{1}{\log_4 4} + \frac{1}{\log_8 4} + . . . . + \frac{1}{\log_2^n 4}\] is


If \[1 + \frac{1 + 2}{2} + \frac{1 + 2 + 3}{3} + . . . .\] to n terms is S, then S is equal to


Sum of n terms of the series \[\sqrt{2} + \sqrt{8} + \sqrt{18} + \sqrt{32} +\] .......  is


The sum of 10 terms of the series \[\sqrt{2} + \sqrt{6} + \sqrt{18} +\] .... is

 

Write the sum to n terms of a series whose rth term is r + 2r.

 

If \[\sum^n_{r = 1} r = 55, \text{ find }  \sum^n_{r = 1} r^3\] .

 


If the sum of first n even natural numbers is equal to k times the sum of first n odd natural numbers, then write the value of k.


Find the sum of the series (33 – 23) + (53 – 43) + (73 – 63) + … to n terms


Find the sum of the series (33 – 23) + (53 – 43) + (73 – 63) + ... to 10 terms


Let Sn denote the sum of the cubes of the first n natural numbers and sn denote the sum of the first n natural numbers. Then `sum_(r = 1)^n S_r/s_r` equals ______.


The sum of the series `1/(x + 1) + 2/(x^2 + 1) + 2^2/(x^4 + 1) + ...... + 2^100/(x^(2^100) + 1)` when x = 2 is ______.


If |x| < 1, |y| < 1 and x ≠ y, then the sum to infinity of the following series:

(x + y) + (x2 + xy + y2) + (x3 + x2y + xy2 + y3) + .... is ______.


The sum of all natural numbers 'n' such that 100 < n < 200 and H.C.F. (91, n) > 1 is ______.


Let Sn(x) = `log_a  1/2 x + log_a  1/3 x + log_a  1/6 x + log_a  1/11 x  +  log_a  1/18 x + log_a  1/27x  + ` ...... up to n-terms, where a > 1. If S24(x) = 1093 and S12(2x) = 265, then value of a is equal to ______.


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×