मराठी

4 + 6 + 9 + 13 + 18 + ... - Mathematics

Advertisements
Advertisements

प्रश्न

4 + 6 + 9 + 13 + 18 + ...

उत्तर

Let Tn  be the nth term and  Sn be the sum of n terms of the given series. 

Thus, we have:

Sn=4+6+9+13+18+...+Tn1+Tn ...(1)

Equation (1) can be rewritten as:

Sn=4+6+9+13+18+...+Tn1+Tn  ...(2)

On subtracting (2) from (1), we get:

Sn=4+6+9+13+18+...+Tn1+Tn

Sn=4+6+9+13+18+...+Tn1+Tn

0=4+[2+3+4+5+6+...+(TnTn1)]Tn

The sequence of difference between successive terms is 2, 3, 4, 5,...
We observe that it is an AP with common difference 1 and first term 2.
Now,

4+[(n1)2{4+(n2)1}]Tn=0

4+[(n1)2(n+2)]Tn=0

4+[n2+n21]Tn=0

[n22+n2+3]=Tn

Sn=k=1nTk

Sn=k=1n(k22+k2+3)

=12k=1nk2+12k=1nk+k=1n3

=n(n+1)(2n+1)2×6+n(n+1)2×2+3n

=n(2n2+3n+1+3n+3+3612)

=n12(2n2+6n+40)

=n6(n2+3n+20)

shaalaa.com
  या प्रश्नात किंवा उत्तरात काही त्रुटी आहे का?
पाठ 21: Some special series - Exercise 21.2 [पृष्ठ १८]

APPEARS IN

आरडी शर्मा Mathematics [English] Class 11
पाठ 21 Some special series
Exercise 21.2 | Q 7 | पृष्ठ १८

व्हिडिओ ट्यूटोरियलVIEW ALL [1]

संबंधित प्रश्‍न

Find the sum to n terms of the series 1 × 2 + 2 × 3 + 3 × 4 + 4 × 5 + …


Find the sum to n terms of the series 3 × 12 + 5 × 22 + 7 × 32 + …


Find the sum to n terms of the series 11×2+12×3+13×4+...


Find the sum to n terms of the series  52 + 62 + 72 + ... + 202


Find the sum to n terms of the series 3 × 8 + 6 × 11 + 9 × 14 +…


Find the sum to n terms of the series 12 + (12 + 22) + (12 + 22 + 32) + …


Find the sum to n terms of the series whose nth term is given by n (n + 1) (n + 4).


Find the sum to n terms of the series whose nth terms is given by n2 + 2n


Find the sum to n terms of the series whose nth terms is given by (2n – 1)2


Show that  1×22+2×32+...+n×(n+1)212×2+22×3+...+n2×(n+1) = 3n+53n+1


1+ 3+ 53 + 73 + ...


22 + 42 + 62 + 82 + ...


1 × 2 + 2 × 3 + 3 × 4 + 4 × 5 + ...


3 × 12 + 5 ×22 + 7 × 32 + ...


Find the sum of the series whose nth term is:

2n2 − 3n + 5


Find the sum of the series whose nth term is:

n (n + 1) (n + 4)


Find the sum of the series whose nth term is:

(2n − 1)2


Find the 20th term and the sum of 20 terms of the series 2 × 4 + 4 × 6 + 6 × 8 + ...


Write the sum of the series 12 − 22 + 32 − 42 + 52 − 62 + ... + (2n − 1)2 − (2n)2.


3 + 7 + 14 + 24 + 37 + ...


1 + 3 + 6 + 10 + 15 + ...


1 + 4 + 13 + 40 + 121 + ...


2 + 4 + 7 + 11 + 16 + ...


11.6+16.11+111.14+114.19+...+1(5n4)(5n+1)


The value of  r=1n{(2r1)a+1br} is equal to


If ∑ n = 210, then ∑ n2 =


If Sn = r=1n1+2+22+... Sum to r terms 2r, then Sn is equal to


If 1+1+22+1+2+33+.... to n terms is S, then S is equal to


Sum of n terms of the series 2+8+18+32+ .......  is


The sum of the series 12 + 32 + 52 + ... to n terms is 


The sum of the series 23+89+2627+8081+ to n terms is


Find the sum of the series (33 – 23) + (53 – 43) + (73 – 63) + … to n terms


A GP consists of an even number of terms. If the sum of all the terms is 5 times the sum of the terms occupying odd places, the common ratio will be equal to ______.


Let Sn(x) = loga 12x+loga 13x+loga 16x+loga 111x + loga 118x+loga 127x + ...... up to n-terms, where a > 1. If S24(x) = 1093 and S12(2x) = 265, then value of a is equal to ______.


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×
Our website is made possible by ad-free subscriptions or displaying online advertisements to our visitors.
If you don't like ads you can support us by buying an ad-free subscription or please consider supporting us by disabling your ad blocker. Thank you.