Advertisements
Advertisements
प्रश्न
The sum of the series \[\frac{2}{3} + \frac{8}{9} + \frac{26}{27} + \frac{80}{81} +\] to n terms is
पर्याय
\[n - \frac{1}{2}( 3^{- n} - 1)\]
\[n - \frac{1}{2}(1 - 3^{- n} )\]
\[n + \frac{1}{2}( 3^n - 1)\]
\[n - \frac{1}{2}( 3^n - 1)\]
उत्तर
\[n - \frac{1}{2}(1 - 3^{- n} )\]
Let
\[T_n\] be the nth term of the given series.
Thus, we have:
\[T_n = \frac{3^n - 1}{3^n} = 1 - \frac{1}{3^n}\]
Now,
Let
\[S_n\] be the sum of n terms of the given series.
Thus, we have:
\[S_n = \sum^n_{k = 1} T_k \]
\[ = \sum^n_{k = 1} \left[ 1 - \frac{1}{3^k} \right]\]
\[ = \sum^n_{k = 1} 1 - \sum^n_{k = 1} \frac{1}{3^k}\]
\[ = n - \left[ \frac{1}{3} + \frac{1}{3^2} + \frac{1}{3^3} + . . . + \frac{1}{3^n} \right]\]
\[ = n - \frac{1}{3}\left[ \frac{1 - \left( \frac{1}{3} \right)^n}{1 - \frac{1}{3}} \right]\]
\[ = n - \frac{1}{2}\left[ 1 - \left( \frac{1}{3} \right)^n \right]\]
\[ = n - \frac{1}{2}\left[ 1 - 3^{- n} \right]\]
APPEARS IN
संबंधित प्रश्न
Find the sum to n terms of the series 1 × 2 + 2 × 3 + 3 × 4 + 4 × 5 + …
Find the sum to n terms of the series `1/(1xx2) + 1/(2xx3)+1/(3xx4)+ ...`
Find the sum to n terms of the series 52 + 62 + 72 + ... + 202
Find the sum to n terms of the series 12 + (12 + 22) + (12 + 22 + 32) + …
Find the sum to n terms of the series whose nth term is given by n (n + 1) (n + 4).
Find the sum to n terms of the series whose nth terms is given by n2 + 2n
Find the sum to n terms of the series whose nth terms is given by (2n – 1)2
13 + 33 + 53 + 73 + ...
1.2.5 + 2.3.6 + 3.4.7 + ...
1 + (1 + 2) + (1 + 2 + 3) + (1 + 2 + 3 + 4) + ...
1 × 2 + 2 × 3 + 3 × 4 + 4 × 5 + ...
Find the sum of the series whose nth term is:
2n2 − 3n + 5
Find the sum of the series whose nth term is:
n3 − 3n
Write the sum of the series 2 + 4 + 6 + 8 + ... + 2n.
Write the sum of the series 12 − 22 + 32 − 42 + 52 − 62 + ... + (2n − 1)2 − (2n)2.
1 + 3 + 6 + 10 + 15 + ...
1 + 4 + 13 + 40 + 121 + ...
\[\frac{1}{1 . 4} + \frac{1}{4 . 7} + \frac{1}{7 . 10} + . . .\]
\[\frac{1}{1 . 6} + \frac{1}{6 . 11} + \frac{1}{11 . 14} + \frac{1}{14 . 19} + . . . + \frac{1}{(5n - 4) (5n + 1)}\]
If Sn = \[\sum^n_{r = 1} \frac{1 + 2 + 2^2 + . . . \text { Sum to r terms }}{2^r}\], then Sn is equal to
Write the 50th term of the series 2 + 3 + 6 + 11 + 18 + ...
Let Sn denote the sum of the cubes of first n natural numbers and sn denote the sum of first n natural numbers. Then, write the value of \[\sum^n_{r = 1} \frac{S_r}{s_r}\] .
The sum of the series
\[\frac{1}{\log_2 4} + \frac{1}{\log_4 4} + \frac{1}{\log_8 4} + . . . . + \frac{1}{\log_2^n 4}\] is
Sum of n terms of the series \[\sqrt{2} + \sqrt{8} + \sqrt{18} + \sqrt{32} +\] ....... is
The sum of the series 12 + 32 + 52 + ... to n terms is
Write the sum to n terms of a series whose rth term is r + 2r.
If \[\sum^n_{r = 1} r = 55, \text{ find } \sum^n_{r = 1} r^3\] .
3 + 5 + 9 + 15 + 23 + ...
Find the natural number a for which ` sum_(k = 1)^n f(a + k)` = 16(2n – 1), where the function f satisfies f(x + y) = f(x) . f(y) for all natural numbers x, y and further f(1) = 2.
Let Sn denote the sum of the cubes of the first n natural numbers and sn denote the sum of the first n natural numbers. Then `sum_(r = 1)^n S_r/s_r` equals ______.
If |x| < 1, |y| < 1 and x ≠ y, then the sum to infinity of the following series:
(x + y) + (x2 + xy + y2) + (x3 + x2y + xy2 + y3) + .... is ______.
The sum of all natural numbers 'n' such that 100 < n < 200 and H.C.F. (91, n) > 1 is ______.
The sum `sum_(k = 1)^20k 1/2^k` is equal to ______.