Advertisements
Advertisements
प्रश्न
3 + 5 + 9 + 15 + 23 + ...
उत्तर
Let \[T_n\] be the nth term and \[S_n\] be the sum to n terms of the given series. Thus, we have: \[S_n = 3 + 5 + 9 + 15 + 23 + . . . + T_{n - 1} + T_n\] ...(1)
Equation (1) can be rewritten as: \[S_n = 3 + 5 + 9 + 15 + 23 + . . . + T_{n - 1} + T_n\] ...(2)
On subtracting (2) from (1), we get:
\[S_n = 3 + 5 + 9 + 15 + 23 + . . . + T_{n - 1} + T_n \]
\[ S_n = 3 + 5 + 9 + 15 + 23 + . . . + T_{n - 1} + T_n \]
\[ 0 = 3 + \left[ 2 + 4 + 6 + 8 + . . . + \left( T_n - T_{n - 1} \right) \right] - T_n\]
The sequence of difference of successive terms is 2, 4, 6, 8,...
We observe that it is an AP with common difference 2 and first term 2.
Thus, we have:
\[3 + \left[ \frac{\left( n - 1 \right)}{2}\left\{ 4 + \left( n - 2 \right)2 \right\} \right] - T_n = 0\]
\[ \Rightarrow 3 + \left[ \frac{\left( n - 1 \right)}{2}\left( 2n \right) \right] = T_n \]
\[ \Rightarrow 3 + n\left( n - 1 \right) = T_n\]
Now,
\[\because S_n = \sum^n_{k = 1} T_k \]
\[ \therefore S_n = \sum^n_{k = 1} \left\{ 3 + k\left( k - 1 \right) \right\} \]
\[ \Rightarrow S_n = \sum^n_{k = 1} k^2 + \sum^n_{k = 1} 3 - \sum^n_{k = 1} k\]
\[ \Rightarrow S_n = \frac{n\left( n + 1 \right)\left( 2n + 1 \right)}{6} + 3n - \frac{n\left( n + 1 \right)}{2}\]
\[ \Rightarrow S_n = \frac{n}{3}\left[ \frac{\left( n + 1 \right)\left( 2n + 1 \right)}{2} + 9 - \frac{3}{2}\left( n + 1 \right) \right]\]
\[ \Rightarrow S_n = \frac{n\left[ n^2 + 8 \right]}{3}\]
APPEARS IN
संबंधित प्रश्न
Find the sum to n terms of the series 1 × 2 + 2 × 3 + 3 × 4 + 4 × 5 + …
Find the sum to n terms of the series 3 × 12 + 5 × 22 + 7 × 32 + …
Find the sum to n terms of the series 12 + (12 + 22) + (12 + 22 + 32) + …
Find the sum to n terms of the series whose nth terms is given by n2 + 2n
Find the sum to n terms of the series whose nth terms is given by (2n – 1)2
Show that `(1xx2^2 + 2xx3^2 + ...+nxx(n+1)^2)/(1^2 xx 2 + 2^2 xx3 + ... + n^2xx (n+1))` = `(3n + 5)/(3n + 1)`
22 + 42 + 62 + 82 + ...
1 + (1 + 2) + (1 + 2 + 3) + (1 + 2 + 3 + 4) + ...
1 × 2 + 2 × 3 + 3 × 4 + 4 × 5 + ...
Find the sum of the series whose nth term is:
2n2 − 3n + 5
Find the sum of the series whose nth term is:
n3 − 3n
Find the sum of the series whose nth term is:
(2n − 1)2
Write the sum of the series 12 − 22 + 32 − 42 + 52 − 62 + ... + (2n − 1)2 − (2n)2.
1 + 3 + 7 + 13 + 21 + ...
2 + 4 + 7 + 11 + 16 + ...
If ∑ n = 210, then ∑ n2 =
If Sn = \[\sum^n_{r = 1} \frac{1 + 2 + 2^2 + . . . \text { Sum to r terms }}{2^r}\], then Sn is equal to
Write the sum of 20 terms of the series \[1 + \frac{1}{2}(1 + 2) + \frac{1}{3}(1 + 2 + 3) + . . . .\]
The sum to n terms of the series \[\frac{1}{\sqrt{1} + \sqrt{3}} + \frac{1}{\sqrt{3} + \sqrt{5}} + \frac{1}{\sqrt{5} + \sqrt{7}} + . . . . + . . . .\] is
If \[1 + \frac{1 + 2}{2} + \frac{1 + 2 + 3}{3} + . . . .\] to n terms is S, then S is equal to
Sum of n terms of the series \[\sqrt{2} + \sqrt{8} + \sqrt{18} + \sqrt{32} +\] ....... is
The sum of 10 terms of the series \[\sqrt{2} + \sqrt{6} + \sqrt{18} +\] .... is
The sum of the series \[\frac{2}{3} + \frac{8}{9} + \frac{26}{27} + \frac{80}{81} +\] to n terms is
If \[\sum^n_{r = 1} r = 55, \text{ find } \sum^n_{r = 1} r^3\] .
If the sum of first n even natural numbers is equal to k times the sum of first n odd natural numbers, then write the value of k.
Find the sum of the series (33 – 23) + (53 – 43) + (73 – 63) + ... to 10 terms
Let Sn denote the sum of the cubes of the first n natural numbers and sn denote the sum of the first n natural numbers. Then `sum_(r = 1)^n S_r/s_r` equals ______.
A GP consists of an even number of terms. If the sum of all the terms is 5 times the sum of the terms occupying odd places, the common ratio will be equal to ______.
The sum `sum_(k = 1)^20k 1/2^k` is equal to ______.