Advertisements
Advertisements
प्रश्न
2 + 4 + 7 + 11 + 16 + ...
उत्तर
Let \[S_n\] be the sum of n terms and \[T_n\] be the nth term of the given series.
Thus, we have:
\[S_n = 2 + 4 + 7 + 11 + 16 + . . . + T_{n - 1} + T_n\] ...(1)
Equation (1) can be rewritten as:
\[S_n = 2 + 4 + 7 + 11 + 16 + . . . + T_{n - 1} + T_n\] ...(2)
On subtracting (2) from (1), we get:
\[S_n = 2 + 4 + 7 + 11 + 16 + . . . + T_{n - 1} + T_n \]
\[ S_n = 2 + 4 + 7 + 11 + 16 + . . . + T_{n - 1} + T_n \]
\[ - \ \ - - - - - \ - \ - \]
_____________________________________________________
\[ 0 = 2 + \left[ 2 + 3 + 4 + 5 + 6 + . . . + \left( T_n - T_{n - 1} \right) \right] - T_n\]
\[\Rightarrow 2 + \left[ \frac{\left( n - 1 \right)}{2}\left( 4 + \left( n - 2 \right)1 \right) \right] - T_n = 0\]
\[ \Rightarrow 2 + \left[ \frac{\left( n - 1 \right)}{2}\left( n + 2 \right) \right] - T_n = 0\]
\[ \Rightarrow 2 + \left[ \frac{n^2 + n}{2} - 1 \right] - T_n = 0\]
\[ \Rightarrow \left[ \frac{n^2}{2} + \frac{n}{2} + 1 \right] = T_n\]
\[\because S_n = \sum^n_{k = 1} T_k \]
\[ \therefore S_n = \sum^n_{k = 1} \left( \frac{k^2}{2} + \frac{k}{2} + 1 \right)\]
\[ = \frac{1}{2} \sum^n_{k = 1} k^2 + \frac{1}{2} \sum^n_{k = 1} k + \sum^n_{k = 1} 1\]
\[ = \frac{n\left( n + 1 \right)\left( 2n + 1 \right)}{12} + \frac{n\left( n + 1 \right)}{4} + n\]
\[ = n\left( \frac{2 n^2 + 3n + 1 + 3n + 3 + 12}{12} \right)\]
\[ = \frac{n}{12}\left( 2 n^2 + 6n + 16 \right)\]
\[ = \frac{n}{6}\left( n^2 + 3n + 8 \right)\]
APPEARS IN
संबंधित प्रश्न
Find the sum to n terms of the series 52 + 62 + 72 + ... + 202
Find the sum to n terms of the series whose nth terms is given by n2 + 2n
Find the sum to n terms of the series whose nth terms is given by (2n – 1)2
Show that `(1xx2^2 + 2xx3^2 + ...+nxx(n+1)^2)/(1^2 xx 2 + 2^2 xx3 + ... + n^2xx (n+1))` = `(3n + 5)/(3n + 1)`
22 + 42 + 62 + 82 + ...
1 + (1 + 2) + (1 + 2 + 3) + (1 + 2 + 3 + 4) + ...
1 × 2 + 2 × 3 + 3 × 4 + 4 × 5 + ...
Find the sum of the series whose nth term is:
2n2 − 3n + 5
Find the sum of the series whose nth term is:
n (n + 1) (n + 4)
Find the sum of the series whose nth term is:
(2n − 1)2
Find the 20th term and the sum of 20 terms of the series 2 × 4 + 4 × 6 + 6 × 8 + ...
1 + 3 + 7 + 13 + 21 + ...
4 + 6 + 9 + 13 + 18 + ...
\[\frac{1}{1 . 4} + \frac{1}{4 . 7} + \frac{1}{7 . 10} + . . .\]
\[\frac{1}{1 . 6} + \frac{1}{6 . 11} + \frac{1}{11 . 14} + \frac{1}{14 . 19} + . . . + \frac{1}{(5n - 4) (5n + 1)}\]
If ∑ n = 210, then ∑ n2 =
If Sn = \[\sum^n_{r = 1} \frac{1 + 2 + 2^2 + . . . \text { Sum to r terms }}{2^r}\], then Sn is equal to
Let Sn denote the sum of the cubes of first n natural numbers and sn denote the sum of first n natural numbers. Then, write the value of \[\sum^n_{r = 1} \frac{S_r}{s_r}\] .
The sum to n terms of the series \[\frac{1}{\sqrt{1} + \sqrt{3}} + \frac{1}{\sqrt{3} + \sqrt{5}} + \frac{1}{\sqrt{5} + \sqrt{7}} + . . . . + . . . .\] is
The sum of the series
\[\frac{1}{\log_2 4} + \frac{1}{\log_4 4} + \frac{1}{\log_8 4} + . . . . + \frac{1}{\log_2^n 4}\] is
If \[1 + \frac{1 + 2}{2} + \frac{1 + 2 + 3}{3} + . . . .\] to n terms is S, then S is equal to
Sum of n terms of the series \[\sqrt{2} + \sqrt{8} + \sqrt{18} + \sqrt{32} +\] ....... is
If \[\sum^n_{r = 1} r = 55, \text{ find } \sum^n_{r = 1} r^3\] .
If the sum of first n even natural numbers is equal to k times the sum of first n odd natural numbers, then write the value of k.
3 + 5 + 9 + 15 + 23 + ...
Find the natural number a for which ` sum_(k = 1)^n f(a + k)` = 16(2n – 1), where the function f satisfies f(x + y) = f(x) . f(y) for all natural numbers x, y and further f(1) = 2.
Find the sum of the series (33 – 23) + (53 – 43) + (73 – 63) + ... to 10 terms
The sum of the series `1/(x + 1) + 2/(x^2 + 1) + 2^2/(x^4 + 1) + ...... + 2^100/(x^(2^100) + 1)` when x = 2 is ______.
The sum of all natural numbers 'n' such that 100 < n < 200 and H.C.F. (91, n) > 1 is ______.
Let Sn(x) = `log_a 1/2 x + log_a 1/3 x + log_a 1/6 x + log_a 1/11 x + log_a 1/18 x + log_a 1/27x + ` ...... up to n-terms, where a > 1. If S24(x) = 1093 and S12(2x) = 265, then value of a is equal to ______.