Advertisements
Advertisements
प्रश्न
The sum of the series
\[\frac{1}{\log_2 4} + \frac{1}{\log_4 4} + \frac{1}{\log_8 4} + . . . . + \frac{1}{\log_2^n 4}\] is
पर्याय
\[\frac{n (n + 1)}{2}\]
\[\frac{n (n + 1) (2n + 1)}{12}\]
\[\frac{n (n + 1)}{4}\]
none of these
उत्तर
\[\frac{n (n + 1)}{4}\]
Let
\[S_n = \frac{1}{\log_2 4} + \frac{1}{\log_4 4} + \frac{1}{\log_8 4} + . . . + \frac{1}{\log_2^n 4}\]
\[\Rightarrow S_n = \frac{\log2}{\log4} + \frac{\log4}{\log4} + \frac{\log8}{\log4} + . . . + \frac{\log 2^n}{\log4}\]
\[ \Rightarrow S_n = \frac{\log2}{\log4} + \frac{\log 2^2}{\log4} + \frac{\log 2^3}{\log4} + . . . + \frac{\log 2^n}{\log4} \]
\[ \Rightarrow S_n = \frac{\log2}{\log4} + \frac{2 \log2}{\log4} + \frac{3 \log2}{\log4} + . . . + \frac{n \log2}{\log4} \]
\[ \Rightarrow S_n = \frac{\log2}{\log4}\left( 1 + 2 + 3 + . . . + n \right)\]
\[ \Rightarrow S_n = \frac{\log 4^\frac{1}{2}}{\log4}\left( 1 + 2 + 3 + . . . + n \right)\]
\[ \Rightarrow S_n = \frac{\frac{1}{2}\log4}{\log4}\left( 1 + 2 + 3 + . . . + n \right)\]
\[ \Rightarrow S_n = \frac{1}{2}\left( 1 + 2 + 3 + . . . + n \right)\]
\[ \Rightarrow S_n = \frac{n\left( n + 1 \right)}{4}\]
APPEARS IN
संबंधित प्रश्न
Find the sum to n terms of the series whose nth terms is given by (2n – 1)2
Show that `(1xx2^2 + 2xx3^2 + ...+nxx(n+1)^2)/(1^2 xx 2 + 2^2 xx3 + ... + n^2xx (n+1))` = `(3n + 5)/(3n + 1)`
22 + 42 + 62 + 82 + ...
1.2.5 + 2.3.6 + 3.4.7 + ...
1 + (1 + 2) + (1 + 2 + 3) + (1 + 2 + 3 + 4) + ...
1 × 2 + 2 × 3 + 3 × 4 + 4 × 5 + ...
Find the sum of the series whose nth term is:
2n3 + 3n2 − 1
Find the sum of the series whose nth term is:
(2n − 1)2
Write the sum of the series 2 + 4 + 6 + 8 + ... + 2n.
1 + 3 + 7 + 13 + 21 + ...
1 + 3 + 6 + 10 + 15 + ...
1 + 4 + 13 + 40 + 121 + ...
4 + 6 + 9 + 13 + 18 + ...
\[\frac{1}{1 . 4} + \frac{1}{4 . 7} + \frac{1}{7 . 10} + . . .\]
If ∑ n = 210, then ∑ n2 =
Let Sn denote the sum of the cubes of first n natural numbers and sn denote the sum of first n natural numbers. Then, write the value of \[\sum^n_{r = 1} \frac{S_r}{s_r}\] .
The sum to n terms of the series \[\frac{1}{\sqrt{1} + \sqrt{3}} + \frac{1}{\sqrt{3} + \sqrt{5}} + \frac{1}{\sqrt{5} + \sqrt{7}} + . . . . + . . . .\] is
Sum of n terms of the series \[\sqrt{2} + \sqrt{8} + \sqrt{18} + \sqrt{32} +\] ....... is
The sum of 10 terms of the series \[\sqrt{2} + \sqrt{6} + \sqrt{18} +\] .... is
The sum of the series 12 + 32 + 52 + ... to n terms is
If \[\sum^n_{r = 1} r = 55, \text{ find } \sum^n_{r = 1} r^3\] .
If the sum of first n even natural numbers is equal to k times the sum of first n odd natural numbers, then write the value of k.
3 + 5 + 9 + 15 + 23 + ...
Let Sn denote the sum of the cubes of the first n natural numbers and sn denote the sum of the first n natural numbers. Then `sum_(r = 1)^n S_r/s_r` equals ______.
The sum of the series `1/(x + 1) + 2/(x^2 + 1) + 2^2/(x^4 + 1) + ...... + 2^100/(x^(2^100) + 1)` when x = 2 is ______.
If |x| < 1, |y| < 1 and x ≠ y, then the sum to infinity of the following series:
(x + y) + (x2 + xy + y2) + (x3 + x2y + xy2 + y3) + .... is ______.
The sum of all natural numbers 'n' such that 100 < n < 200 and H.C.F. (91, n) > 1 is ______.