Advertisements
Advertisements
प्रश्न
The sum of the series
\[\frac{1}{\log_2 4} + \frac{1}{\log_4 4} + \frac{1}{\log_8 4} + . . . . + \frac{1}{\log_2^n 4}\] is
विकल्प
\[\frac{n (n + 1)}{2}\]
\[\frac{n (n + 1) (2n + 1)}{12}\]
\[\frac{n (n + 1)}{4}\]
none of these
उत्तर
\[\frac{n (n + 1)}{4}\]
Let
\[S_n = \frac{1}{\log_2 4} + \frac{1}{\log_4 4} + \frac{1}{\log_8 4} + . . . + \frac{1}{\log_2^n 4}\]
\[\Rightarrow S_n = \frac{\log2}{\log4} + \frac{\log4}{\log4} + \frac{\log8}{\log4} + . . . + \frac{\log 2^n}{\log4}\]
\[ \Rightarrow S_n = \frac{\log2}{\log4} + \frac{\log 2^2}{\log4} + \frac{\log 2^3}{\log4} + . . . + \frac{\log 2^n}{\log4} \]
\[ \Rightarrow S_n = \frac{\log2}{\log4} + \frac{2 \log2}{\log4} + \frac{3 \log2}{\log4} + . . . + \frac{n \log2}{\log4} \]
\[ \Rightarrow S_n = \frac{\log2}{\log4}\left( 1 + 2 + 3 + . . . + n \right)\]
\[ \Rightarrow S_n = \frac{\log 4^\frac{1}{2}}{\log4}\left( 1 + 2 + 3 + . . . + n \right)\]
\[ \Rightarrow S_n = \frac{\frac{1}{2}\log4}{\log4}\left( 1 + 2 + 3 + . . . + n \right)\]
\[ \Rightarrow S_n = \frac{1}{2}\left( 1 + 2 + 3 + . . . + n \right)\]
\[ \Rightarrow S_n = \frac{n\left( n + 1 \right)}{4}\]
APPEARS IN
संबंधित प्रश्न
Find the sum to n terms of the series 1 × 2 + 2 × 3 + 3 × 4 + 4 × 5 + …
Find the sum to n terms of the series 3 × 12 + 5 × 22 + 7 × 32 + …
Find the sum to n terms of the series `1/(1xx2) + 1/(2xx3)+1/(3xx4)+ ...`
Find the sum to n terms of the series 52 + 62 + 72 + ... + 202
Find the sum to n terms of the series 12 + (12 + 22) + (12 + 22 + 32) + …
Find the sum to n terms of the series whose nth terms is given by n2 + 2n
Show that `(1xx2^2 + 2xx3^2 + ...+nxx(n+1)^2)/(1^2 xx 2 + 2^2 xx3 + ... + n^2xx (n+1))` = `(3n + 5)/(3n + 1)`
13 + 33 + 53 + 73 + ...
22 + 42 + 62 + 82 + ...
1.2.4 + 2.3.7 +3.4.10 + ...
1 + (1 + 2) + (1 + 2 + 3) + (1 + 2 + 3 + 4) + ...
1 × 2 + 2 × 3 + 3 × 4 + 4 × 5 + ...
3 × 12 + 5 ×22 + 7 × 32 + ...
Find the sum of the series whose nth term is:
n (n + 1) (n + 4)
Find the 20th term and the sum of 20 terms of the series 2 × 4 + 4 × 6 + 6 × 8 + ...
1 + 3 + 6 + 10 + 15 + ...
1 + 4 + 13 + 40 + 121 + ...
2 + 4 + 7 + 11 + 16 + ...
\[\frac{1}{1 . 4} + \frac{1}{4 . 7} + \frac{1}{7 . 10} + . . .\]
The value of \[\sum^n_{r = 1} \left\{ (2r - 1) a + \frac{1}{b^r} \right\}\] is equal to
If ∑ n = 210, then ∑ n2 =
If Sn = \[\sum^n_{r = 1} \frac{1 + 2 + 2^2 + . . . \text { Sum to r terms }}{2^r}\], then Sn is equal to
Write the sum of 20 terms of the series \[1 + \frac{1}{2}(1 + 2) + \frac{1}{3}(1 + 2 + 3) + . . . .\]
Let Sn denote the sum of the cubes of first n natural numbers and sn denote the sum of first n natural numbers. Then, write the value of \[\sum^n_{r = 1} \frac{S_r}{s_r}\] .
Sum of n terms of the series \[\sqrt{2} + \sqrt{8} + \sqrt{18} + \sqrt{32} +\] ....... is
The sum of 10 terms of the series \[\sqrt{2} + \sqrt{6} + \sqrt{18} +\] .... is
The sum of the series \[\frac{2}{3} + \frac{8}{9} + \frac{26}{27} + \frac{80}{81} +\] to n terms is
3 + 5 + 9 + 15 + 23 + ...
Find the sum of the series (33 – 23) + (53 – 43) + (73 – 63) + … to n terms
Let Sn denote the sum of the cubes of the first n natural numbers and sn denote the sum of the first n natural numbers. Then `sum_(r = 1)^n S_r/s_r` equals ______.
If |x| < 1, |y| < 1 and x ≠ y, then the sum to infinity of the following series:
(x + y) + (x2 + xy + y2) + (x3 + x2y + xy2 + y3) + .... is ______.
A GP consists of an even number of terms. If the sum of all the terms is 5 times the sum of the terms occupying odd places, the common ratio will be equal to ______.
The sum `sum_(k = 1)^20k 1/2^k` is equal to ______.